Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 32(7): 12228-12242, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38571052

RESUMO

Highly collimated and directional backlights are essential for realizing advanced display technologies such as autostereoscopic 3D displays. Previously reported collimated backlights, either edge-lit or direct-lit, in general still suffer unsatisfactory form factors, directivity, uniformity, or crosstalk etc. In this work, we report a simple stacking architecture for the highly collimated and uniform backlights, by combining linear light source arrays and carefully designed cylindrical lens arrays. Experiments were conducted to validate the design and simulation, using the conventional edge-lit backlight or the direct-lit mini-LED (mLED) arrays as light sources, the NiFe (stainless steel) barrier sheets, and cylindrical lens arrays fabricated by molding. Highly collimated backlights with small angular divergence of ±1.45°âˆ¼±2.61°, decent uniformity of 93-96%, and minimal larger-angle sidelobes in emission patterns were achieved with controlled divergence of the light source and optimization of lens designs. The architecture reported here provides a convenient way to convert available backlight sources into a highly collimated backlight, and the use of optically reflective barrier also helps recycle light energy and enhance the luminance. The results of this work are believed to provide a facile approach for display technologies requiring highly collimated backlights.

2.
Opt Lett ; 48(11): 2933-2936, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37262247

RESUMO

This paper demonstrates an AlGaInP-based 620-nm red micro-light-emitting-diode (µ-LED) array and studies the enhancement effect of the surface treatments using (NH4)2Sx solutions by comparing the characteristics of µ-LED arrays with and without the (NH4)2Sx treatment. Furthermore, our µ-LED array demonstrates a measurement of the current efficiency (2.6 cd/A), which improves the light output uniformity. Also, we apply a setup for measuring the response time at the fast ns-level to analyze the effect of passivation in AlGaInP-based µ-LED arrays.

3.
Opt Express ; 30(26): 46435-46449, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36558597

RESUMO

Light extraction improvement is still an important issue for active-matrix organic light-emitting diode displays (AMOLEDs). In our previous work, a three-dimensional (3D) reflective pixel configuration embedding the OLED in the concave 3D reflector and patterned high-index filler had been proposed for significant enhancement of the pixel light extraction. In this work, influences of thin film encapsulation (TFE) on light extraction of such reflective 3D OLED pixels are considered as well by simulation studies. Unfortunately, the optical simulation reveals strong reduction of the light extraction efficiency induced by TFE layers. As such, an additional angle-selective optical film structure between the pixel and the encapsulation layers is introduced to control the angular distribution of the light coupled into the encapsulation layers and to solve TFE-induced optical losses. As a result, TFE-induced losses can be substantially reduced to retain much of light extraction efficiency. The results of this study are believed to provide useful insights and guides for developing even more efficient and power-saving AMOLEDs.

4.
Chemistry ; 28(2): e202103543, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34730859

RESUMO

A series of [-2, -1, 0] charged-ligand based iridium(III) complexes of [Ir(bph)(bpy)(acac)] (1), [Ir(bph)(2MeO-bpy)(acac)] (2), [Ir(bph)(2CF3 -bpy)(acac)] (3), [Ir(bph)(bpy)(2t Bu-acac)] (4) and [Ir(bph)(bpy)(CF3 -acac)] (5), which using biphenyl as dianionic ligand [-2], acetylacetone (or its derivatives) as monoanionic ligand [-1], and 2,2'-bipyridine (or its derivatives) as neutral ligand [0] were designed and synthesized. The chemical structures were well characterized. All of the ligands have simple chemical structures, thus further making the complexes have excellent thermal stability and are easy to sublimate and purify. Phosphorescent characteristics with short emission lifetime were demonstrated for these emitters. Notably, all of the complexes exhibit remarkable deep red/near infrared emission, which is quite different from the reported [-1, -1, -1] charged-ligand based iridium(III) complexes. The photophysical properties of these complexes are regularly improved by introducing electron-donating or -withdrawing groups into [-1] or [0] charged-ligand. The related organic light-emitting diodes exhibited deep red/near infrared emission with acceptable external quantum efficiency and low turn-on voltage (<2.6 V). This work provides a new idea for the construction of new type phosphorescent iridium(III) emitters with different valence states of [-2, -1, 0] charged ligands, thus offering new opportunities and challenges for their optoelectronic applications.

5.
Opt Express ; 29(5): 7654-7665, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33726262

RESUMO

Sunlight/UV (ultraviolet)-induced degradation is still a critical issue for outdoor applications of organic light-emitting diode (OLED) displays. Therefore, effective UV-blocking structures that can prevent OLED displays from sunlight/UV degradation and still keep the OLED panels' display performance is necessary. In this report, modified distributed Bragg reflector (DBR) structures having UV-absorbing dielectric materials and adjusted layer/pair thicknesses were developed to realize effective UV blocking properties (nearly 0% transmittance below 400 nm), constantly high transmittance like glass in the visible range (∼92%) required for display applications, and sharp transition in transmission between the UV and the visible ranges. Furthermore, under the rigorous IEC 60068-2-5 solar test condition, it was verified that the developed modified, UV-blocking DBR can effectively enhance the OLED panel's resistance against UV/solar-induced degradation, effectively reducing voltage shifts of OLED devices after repeated solar test cycles.

6.
Chemistry ; 27(9): 3151-3158, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33241622

RESUMO

The development of thermally activated delayed fluorescence (TADF) emitters with orange-red emission still lags behind that of their blue, green, and yellow counterparts. Recent research to address this problem mainly focused on developing new acceptor units. There were few donor units designed especially for orange-red emitters. Herein, with benzothiophene fused to a diphenylacridine donor unit, a new donor moiety, namely, 5,5-diphenyl-5,13-dihydrobenzo[4,5]thieno[3,2-c]acridine (BTDPAc), was designed and synthesized. Benefiting from the strong electron-donating ability of the new donor moiety, a new TADF emitter, 2-[4'-(tert-butyl)(1,1'-biphenyl)-4-yl]-6-[5,5-diphenylbenzo[4,5]thieno[3,2-c]acridin-13(5H)-yl]-1H-benzo[de]isoquinoline-1,3(2H)-dione (BTDPAc-PhNAI), shows an orange-red emission with a maximum at 610 nm in dilute toluene solution. Also, with the help of the diphenyl rings of the donor unit, high photoluminescence quantum yields were achieved for BTDPAc-PhNAI over a wide concentration range. Consequently, an orange-red organic light-emitting diode based on BTDPAc-PhNAI achieved a high external quantum efficiency of nearly 20 %, which was comparable to state-of-the-art device performances with similar emission spectra.

7.
Opt Express ; 24(10): A810-22, 2016 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-27409954

RESUMO

We report the characterization and analyses of organic light-emitting devices (OLEDs) using microstructured composite transparent electrodes consisting of the high-index ITO (indium tin oxide) micromesh and the low-index conducting polymer PEDOT: PSS [poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)], that are fabricated by the facile and convenient microsphere lithography and are useful for enhancing light extraction. The rigorous electromagnetic simulation based on the three-dimensional finite-difference time-domain (FDTD) method was conducted to study optical properties and mechanisms in such devices. It provides a different but consistent viewpoint/insight of how this microstructured electrode enhances optical out-coupling of OLEDs, compared to that provided by ray optics simulation in previous works. Both experimental and simulation studies indicate such a microstructured electrode effectively enhances coupling of internal radiation into the substrate, compared to devices with the typical planar ITO electrode. By combining this internal extraction structure and the external extraction scheme (e.g. by attaching extraction lens) to further extract radiation into the substrate, a rather high external quantum efficiency of 46.8% was achieved with green phosphorescent OLEDs, clearly manifesting its high potential.

8.
Angew Chem Int Ed Engl ; 55(9): 3017-21, 2016 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-26822378

RESUMO

The electron positive boron atom usually does not contribute to the frontier orbitals for several lower-lying electronic transitions, and thus is ideal to serve as a hub for the spiro linker of light-emitting molecules, such that the electron donor (HOMO) and acceptor (LUMO) moieties can be spatially separated with orthogonal orientation. On this basis, we prepared a series of novel boron complexes bearing electron deficient pyridyl pyrrolide and electron donating phenylcarbazolyl fragments or triphenylamine. The new boron complexes show strong solvent-polarity dependent charge-transfer emission accompanied by a small, non-negligible normal emission. The slim orbital overlap between HOMO and LUMO and hence the lack of electron correlation lead to a significant reduction of the energy gap between the lowest lying singlet and triplet excited states (ΔET-S ) and thereby the generation of thermally activated delay fluorescence (TADF).

9.
Opt Express ; 22 Suppl 2: A438-45, 2014 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-24922253

RESUMO

The aluminum and sliver multilayered nano-grating structure is fabricated by laser interference lithography and the intervals between nanoslits is filled with modified PEDOT:PSS. The grating structured transparent electrode functions as the anti-reflection layer which not only decreases the reflected light but also increases the absorption of the active layer. The performances of P3HT:PC61BM solar cells are studied experimentally and theoretically in detail. The field intensities of the transverse magnetic (TM) and transverse electrical (TE) waves distributed in the active layer are simulated by rigorous coupled wave analysis (RCWA). The power conversion efficiency of the plasmonic ITO-free polymer solar cell can reach 3.64% which is higher than ITO based polymer solar cell with efficiency of 3.45%.

10.
Opt Express ; 22(7): 7388-98, 2014 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-24718114

RESUMO

Three different nano-grating structures are designed as phase retarders that can transform linearly polarized light to circularly polarized emission for the wavelengths of 488 nm, 532 nm and 632.8 nm, respectively. Gold based nano-grating structures with various periods are fabricated by utilizing laser interference lithography. The ellipticity of all circularly polarized emission can reach around 90% such that the structure has great potential in the applications of three-dimensional (3D) display. The effects of the slit width and metal thickness modulations are simulated by rigorous coupled wave analysis (RCWA) method. Besides, the field intensity and phase of the transmitted TM and TE waves are also simulated to understand their polarization characteristics.

11.
Chemistry ; 20(50): 16574-82, 2014 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-25323762

RESUMO

Two D-π-A'-A regioisomers (A-IDT-D and D-IDT-A) featuring 4,4'-di-p-tolyl-4 H-indeno[1,2-b]-thiophene as a π linker (π) between the diarylamino donor (D) and the pyrimidine-cyanoacrylic acid acceptor (A'-A) have been successfully synthesized and characterized as efficient sensitizers for the dye-sensitized solar cells (DSSCs). The different arrangements of the D and A'-A blocks on the unsymmetrical indenothiophene (IDT) core render the dipole of IDT being along (A-IDT-D) or opposite (D-IDT-A) to the direction of intramolecular (donor-to-acceptor) charge transfer, and thus induce variations in the physical properties. The experimental observations correlated well with the theoretical analyses, clearly revealing the trade-off between the molar extinction coefficient (ε) and the S0 →S1 transition energy. As a result, a superior ε value was observed for D-IDT-A, whereas a bathochromic shift in the absorption occurred in A-IDT-D. The larger ε value of D-IDT-A together with its more favorable energy level relative to TiO2 led to a higher power conversion efficiency of 7.41 % for the D-IDT-A-based DSSC, retaining approximately 95 % of the N719-based DSSC efficiency. This work manifests the clear structure-property relationship for the case of donor and acceptor components being connected by an unsymmetrical π linker and provides insights for molecular engineering of organic sensitizers.

12.
Appl Opt ; 53(22): E1-6, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25090347

RESUMO

In this work, we conducted studies of tandem organic light-emitting devices (OLEDs) based on the connecting structure consisting of n-doped electron-transport layer (n-ETL)/1,4,5,8,9,11-hexaazatriphenylene hexacarbonitrile (HATCN)/hole-transport layer. We investigated effects of different n-ETL materials and different HATCN thicknesses on characteristics of tandem OLEDs. Results show that the tandem OLEDs with n-BPhen and a 20 nm layer of HATCN in the connecting structure exhibited the best performance. With these, highly efficient and bright green phosphorescent two-emitting-unit tandem OLEDs, with drive voltages significantly lower than twice that of the single-unit benchmark device and current efficiencies higher than twice that of the single-unit benchmark device, were demonstrated.

13.
ACS Appl Mater Interfaces ; 15(29): 35239-35250, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37459567

RESUMO

Deep-blue thermally activated delayed fluorescence (TADF) molecules present promising potential in organic light-emitting diodes (OLEDs), especially for display applications. Here, an efficient molecular engineering approach to modifying the donor or acceptor features of the D-π-A-configured TADF molecules for deep-blue emission is reported. By introducing oxygen and sulfone as a bridge unit onto the macrocyclic donor, two emitters, c-ON-MeTRZ and c-NS-MeTRZ, are synthesized and characterized, respectively. The reduced donor strength of c-ON-MeTRZ and c-NS-MeTRZ as compared to that of the model molecule c-NN-MeTRZ leads to blue-shifted emissions with high photoluminescence quantum yields (PLQYs) and retains TADF characters, while the new emitter c-NN-MePym with the most blue-shifted emission only exhibits a pure fluorescent nature because of the electron-accepting feature of pyrimidine that is insufficient for inducing the TADF property. In the presence of macrocyclic donors, these new emitters show high horizontal dipole ratios (Θ// = 85-89%), which are beneficial for improving the light out-coupling efficiency. Deep-blue TADF OLEDs incorporating c-ON-MeTRZ as an emitter doped in the mCPCN host achieves a high maximum external quantum efficiency (EQEmax) of 30.2% together with 1931 Commission Internationale de I'Eclairage (CIE) coordinates of (0.14, 0.13), while the counter device employing c-NS-MeTRZ as a dopant gives EQEmax of 15.4% and CIE coordinates of (0.14, 0.09). The EQEmax of c-ON-MeTRZ- and c-NS-MeTRZ-based devices can be significantly improved to 34.4 and 29.3%, respectively, with a polar host DPEPO, which stabilizes the charge transfer (CT) S1 state to give lower ΔEST for improving the reverse intersystem crossing process. The efficient TADF character, high PLQYs, and high anisotropic emission dipole ratios work together to render the superior electroluminescence (EL) efficiencies. Based on the detailed characterizations of physical properties, theoretical analyses, and comprehensive study on the corresponding devices, a clear structure-property-performance relationship has been successfully established to verify the effective molecular design strategy of modulating the macrocyclic donor characters for efficient deep-blue TADF emitters.

14.
Micromachines (Basel) ; 14(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36677070

RESUMO

Micro-light-emitting diodes (micro-LEDs) have been regarded as the important next-generation display technology, and a comprehensive and reliable modeling method for the design and optimization of characteristics of the micro-LED is of great use. In this work, by integrating the electrical simulation with the optical simulation, we conduct comprehensive simulation studies on electrical and optical/emission properties of real InGaN-based flip-chip micro-LED devices. The integrated simulation adopting the output of the electrical simulation (e.g., the non-uniform spontaneous emission distribution) as the input of the optical simulation (e.g., the emission source distribution) can provide more comprehensive and detailed characteristics and mechanisms of the micro-LED operation than the simulation by simply assuming a simple uniform emission source distribution. The simulated electrical and emission properties of the micro-LED were well corroborated by the measured properties, validating the effectiveness of the simulation. The reliable and practical modeling/simulation methodology reported here shall be useful to thoroughly investigate the physical mechanisms and operation of micro-LED devices.

15.
Mater Horiz ; 9(2): 772-779, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-34897349

RESUMO

Near-infrared thermally activated delayed fluorescence (NIR-TADF) materials with emission over 700 nm have been insufficiently investigated mainly due to the limited choice of strong donor/acceptor units for molecular construction and the limited electronic coupling between the donors and acceptors. Herein, a novel D-A1-A2-A3 configuration was developed for the design of a NIR-TADF material (TPA-CN-N4-2PY), in which three types of sub-acceptor units (CN: cyano; N4: dipyrido[3,2-a:2',3'-c]phenazine; PY: pyridine) were incorporated into a molecular skeleton to reinforce the electron-accepting strength. The attachment of two pyridine units on TPA-CN-N4 produced TPA-CN-N4-2PY with an extended π-backbone, which shifted the electroluminescence (EL) emission into the NIR region and enhanced the horizontal ratio of emitting dipole orientation (Θ//) simultaneously. TPA-CN-N4-2PY-based OLEDs demonstrated a record-high external quantum efficiency (EQE) of 21.9% with an emission peak at 712 nm and Θ// = 85% at the doping ratio of 9.0 wt%. On the contrary, the parent compound TPA-CN-N4-based OLEDs at the same doping ratio achieved an EQE of 23.4% at 678 nm with Θ// = 75%. This multiple sub-acceptors approach could enrich the design strategy of the NIR-TADF materials, and the large conjugated system could improve the Θ// for achieving efficient emitters.


Assuntos
Eletrônica , Fluorescência
16.
J Org Chem ; 76(21): 8977-85, 2011 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-21970376

RESUMO

A series of new organic dyes exploiting coplanar indacenodithiophene as the central π-spacer of the classical donor-(π-spacer)-acceptor configuration were synthesized and characterized for dye-sensitized solar cells. The coplanarity of the indacenodithiophene core facilitates efficient donor to acceptor charge transfer, imparting the new organic dyes significant bathochromic shifts and remarkable power conversion efficiencies of up to 6.7% (DTInDT) under AM 1.5G radiation.

17.
Mater Horiz ; 8(8): 2286-2292, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34846432

RESUMO

The thermally activated delayed fluorescence (TADF) emitters based on donor-acceptor (D-A) configuration were continuously developed in the past few years, whereas an unsymmetrical TADF emitter with A-D-A' configuration has never been reported. Herein, an A-D-A' type TADF emitter of TRZ-SBA-NAI was firstly developed by simultaneously integrating 2-phenyl-1H-benzo[de]isoquinoline-1,3(2H)-dione and 2,4,6-triphenyl-1,3,5-triazine acceptors into a spirobiacridine donor core. Due to the coexistence of double charge-transfer excited states, TRZ-SBA-NAI displayed dual emission containing a dominant orange-red emission and an anti-Kasha's rule sky-blue emission shoulder in solution. As doped into the host matrix, TRZ-SBA-NAI only exhibited an orange-red emission, together with a high photoluminescence quantum yield of 87%. The linear molecular shape imparted TRZ-SBA-NAI with a high horizontal dipole ratio of 88%. As a result, the TRZ-SBA-NAI based devices achieved a record-high external quantum efficiency of 31.7% with an electroluminescence peak at 593 nm. This finding not only enriches the diversity in TADF molecular design, but also unlocks the huge potential of A-D-A' type TADF emitters for excellent device performance.

18.
Mater Horiz ; 8(2): 547-555, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34821270

RESUMO

By integrating high molecular rigidity and stable chirality, two pairs of D*-A type circularly polarized thermally activated delayed fluorescence (CP-TADF) emitters with an almost absolute quasi-equatorial conformer geometry and excellent photoluminescence quantum efficiencies (PLQYs) are developed, achieving state-of-the-art electroluminescence performance among blue and orange circularly polarized organic light-emitting diodes (CP-OLEDs).

19.
Mater Horiz ; 8(4): 1297-1303, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34821922

RESUMO

Rigid electron donors (D) and acceptors (A) have been widely used in recent years for the construction of D-A type thermally activated delayed fluorescence (TADF) materials. However, the chromophore robustness does not always make a positive contribution to the high efficiency of TADF materials. Here, the comparison study of two D-A type red TADF compounds (PT-TPA and PT-Az) demonstrated, for the first time, the positive impact of chromophore flexibility on the efficiency of TADF materials. In PT-Az, the rotation of terminal phenyl groups is restrained by an ethylene linker, leading to its inferior photoluminescence quantum yield (PLQY). In contrast, PT-TPA with free rotation of the phenyl groups showed a low reorganization energy and a large transition dipole moment for the S1→ S0 transition, which resulted in a high fluorescence radiative decay rate. As a result, the optimized devices based on PT-TPA gave a maximum external quantum efficiency (EQE) of 29.7% (632 nm) when doped in a single host and an EQE of 28.8% (648 nm) in an exciplex host. This study provided an insight into the impact of chromophore flexibility on the photophysical properties and device efficiency of TADF materials, and these results may provide valuable guidance for the molecular design of efficient emitters.

20.
ACS Appl Mater Interfaces ; 13(11): 13478-13486, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33689279

RESUMO

How to develop efficient red-emitting organometallics of earth-abundant copper(I) is a formidable challenge in the field of organic light-emitting diodes (OLEDs) because Cu(I) complexes have weak spin-orbit coupling and a serious excited-state reorganization effect. Here, a red Cu(I) complex, MAC*-Cu-DPAC, was developed using a rigid 9,9-diphenyl-9,10-dihydroacridine donor ligand in a carbene-metal-amide motif. The Cu(I) complex achieved satisfactory red emission, a high photoluminescence quantum yield of up to 70%, and a sub-microsecond lifetime. Thanks to a linear geometry and the acceptor and donor ligands in a coplanar conformation, the complex exhibited a high horizontal dipole ratio of 77% in the host matrix, first demonstrated for coinage metal(I) complexes. The resulting OLEDs delivered high external quantum efficiencies of 21.1% at a maximum and 20.1% at 1000 nits, together with a red emission peak at ∼630 nm. These values represent the state-of-the-art performance for red-emitting OLEDs based on coinage metal complexes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA