Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
1.
Cell ; 187(4): 846-860.e17, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38262409

RESUMO

RNAs localizing to the outer cell surface have been recently identified in mammalian cells, including RNAs with glycan modifications known as glycoRNAs. However, the functional significance of cell surface RNAs and their production are poorly known. We report that cell surface RNAs are critical for neutrophil recruitment and that the mammalian homologs of the sid-1 RNA transporter are required for glycoRNA expression. Cell surface RNAs can be readily detected in murine neutrophils, the elimination of which substantially impairs neutrophil recruitment to inflammatory sites in vivo and reduces neutrophils' adhesion to and migration through endothelial cells. Neutrophil glycoRNAs are predominantly on cell surface, important for neutrophil-endothelial interactions, and can be recognized by P-selectin (Selp). Knockdown of the murine Sidt genes abolishes neutrophil glycoRNAs and functionally mimics the loss of cell surface RNAs. Our data demonstrate the biological importance of cell surface glycoRNAs and highlight a noncanonical dimension of RNA-mediated cellular functions.


Assuntos
Células Endoteliais , Infiltração de Neutrófilos , Neutrófilos , RNA , Animais , Camundongos , Células Endoteliais/metabolismo , Neutrófilos/metabolismo , RNA/química , RNA/metabolismo , Proteínas de Transporte de Nucleotídeos/genética , Proteínas de Transporte de Nucleotídeos/metabolismo
2.
Immunity ; 50(1): 137-151.e6, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30650373

RESUMO

Fever is an evolutionarily conserved response that confers survival benefits during infection. However, the underlying mechanism remains obscure. Here, we report that fever promoted T lymphocyte trafficking through heat shock protein 90 (Hsp90)-induced α4 integrin activation and signaling in T cells. By inducing selective binding of Hsp90 to α4 integrins, but not ß2 integrins, fever increased α4-integrin-mediated T cell adhesion and transmigration. Mechanistically, Hsp90 bound to the α4 tail and activated α4 integrins via inside-out signaling. Moreover, the N and C termini of one Hsp90 molecule simultaneously bound to two α4 tails, leading to dimerization and clustering of α4 integrins on the cell membrane and subsequent activation of the FAK-RhoA pathway. Abolishment of Hsp90-α4 interaction inhibited fever-induced T cell trafficking to draining lymph nodes and impaired the clearance of bacterial infection. Our findings identify the Hsp90-α4-integrin axis as a thermal sensory pathway that promotes T lymphocyte trafficking and enhances immune surveillance during infection.


Assuntos
Febre/imunologia , Proteínas de Choque Térmico HSP90/metabolismo , Integrina alfa4/metabolismo , Infecções por Salmonella/imunologia , Salmonella typhimurium/imunologia , Linfócitos T/imunologia , Animais , Carga Bacteriana , Adesão Celular , Movimento Celular , Dimerização , Quinase 1 de Adesão Focal/metabolismo , Vigilância Imunológica , Integrina alfa4/genética , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ligação Proteica , Transdução de Sinais , Proteína rhoA de Ligação ao GTP/metabolismo
3.
J Immunol ; 209(4): 723-730, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35914834

RESUMO

Severe acute respiratory syndrome coronavirus 2, responsible for the severe acute respiratory syndrome known as COVID-19, has rapidly spread in almost every country and devastated the global economy and health care system. Lung injury is an early disease manifestation believed to be a major contributor to short- and long-term pathological consequences of COVID-19, and thus drug discovery aiming to ameliorate lung injury could be a potential strategy to treat COVID-19 patients. By inducing a severe acute respiratory syndrome-like pulmonary disease model through infecting A/J mice with murine hepatitis virus strain 1 (MHV-1), we show that i.v. administration of pazopanib ameliorates acute lung injuries without affecting MHV-1 replication. Pazopanib reduces cell apoptosis in MHV-1-infected lungs. Furthermore, we also identified that pazopanib has to be given no later than 48 h after the virus infection without compromising the therapeutic effect. Our study provides a potential treatment for coronavirus-induced lung injuries and support for further evaluation of pazopanib in COVID-19 patients.


Assuntos
Tratamento Farmacológico da COVID-19 , Lesão Pulmonar , Vírus da Hepatite Murina , Animais , Indazóis , Pulmão , Lesão Pulmonar/tratamento farmacológico , Camundongos , Pirimidinas , Sulfonamidas/uso terapêutico
4.
Cell ; 138(3): 525-36, 2009 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-19665974

RESUMO

Modulation of intracellular chloride concentration ([Cl(-)](i)) plays a fundamental role in cell volume regulation and neuronal response to GABA. Cl(-) exit via K-Cl cotransporters (KCCs) is a major determinant of [Cl(-)](I); however, mechanisms governing KCC activities are poorly understood. We identified two sites in KCC3 that are rapidly dephosphorylated in hypotonic conditions in cultured cells and human red blood cells in parallel with increased transport activity. Alanine substitutions at these sites result in constitutively active cotransport. These sites are highly phosphorylated in plasma membrane KCC3 in isotonic conditions, suggesting that dephosphorylation increases KCC3's intrinsic transport activity. Reduction of WNK1 expression via RNA interference reduces phosphorylation at these sites. Homologous sites are phosphorylated in all human KCCs. KCC2 is partially phosphorylated in neonatal mouse brain and dephosphorylated in parallel with KCC2 activation. These findings provide insight into regulation of [Cl(-)](i) and have implications for control of cell volume and neuronal function.


Assuntos
Simportadores/química , Simportadores/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Humanos , Camundongos , Dados de Sequência Molecular , Fosforilação , Alinhamento de Sequência , Cotransportadores de K e Cl-
5.
Nature ; 564(7734): 119-124, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30455424

RESUMO

Haematopoietic stem and progenitor cells (HSPCs) give rise to all blood lineages that support the entire lifespan of vertebrates1. After HSPCs emerge from endothelial cells within the developing dorsal aorta, homing allows the nascent cells to anchor in their niches for further expansion and differentiation2-5. Unique niche microenvironments, composed of various blood vessels as units of microcirculation and other niche components such as stromal cells, regulate this process6-9. However, the detailed architecture of the microenvironment and the mechanism for the regulation of HSPC homing remain unclear. Here, using advanced live imaging and a cell-labelling system, we perform high-resolution analyses of the HSPC homing in caudal haematopoietic tissue of zebrafish (equivalent to the fetal liver in mammals), and reveal the role of the vascular architecture in the regulation of HSPC retention. We identify a VCAM-1+ macrophage-like niche cell population that patrols the inner surface of the venous plexus, interacts with HSPCs in an ITGA4-dependent manner, and directs HSPC retention. These cells, named 'usher cells', together with caudal venous capillaries and plexus, define retention hotspots within the homing microenvironment. Thus, the study provides insights into the mechanism of HSPC homing and reveals the essential role of a VCAM-1+ macrophage population with patrolling behaviour in HSPC retention.


Assuntos
Células Endoteliais/citologia , Células-Tronco Hematopoéticas/citologia , Macrófagos/metabolismo , Nicho de Células-Tronco , Molécula 1 de Adesão de Célula Vascular/metabolismo , Animais , Diferenciação Celular , Movimento Celular , Microambiente Celular , Integrinas/genética , Integrinas/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
6.
Nat Immunol ; 11(6): 495-502, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20473299

RESUMO

Chemokines and other chemoattractants direct leukocyte migration and are essential for the development and delivery of immune and inflammatory responses. To probe the molecular mechanisms that underlie chemoattractant-guided migration, we did an RNA-mediated interference screen that identified several members of the synaptotagmin family of calcium-sensing vesicle-fusion proteins as mediators of cell migration: SYT7 and SYTL5 were positive regulators of chemotaxis, whereas SYT2 was a negative regulator of chemotaxis. SYT7-deficient leukocytes showed less migration in vitro and in a gout model in vivo. Chemoattractant-induced calcium-dependent lysosomal fusion was impaired in SYT7-deficient neutrophils. In a chemokine gradient, SYT7-deficient lymphocytes accumulated lysosomes in their uropods and had impaired uropod release. Our data identify a molecular pathway required for chemotaxis that links chemoattractant-induced calcium flux to exocytosis and uropod release.


Assuntos
Movimento Celular/fisiologia , Sinaptotagminas/metabolismo , Animais , Quimiocina CXCL12/metabolismo , Quimiotaxia , Immunoblotting , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Reação em Cadeia da Polimerase , Receptores CXCR4/metabolismo , Sinaptotagmina II/metabolismo , Sinaptotagminas/genética , Linfócitos T/imunologia
7.
J Immunol ; 204(4): 1012-1021, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31924649

RESUMO

Cell polarization is a key step for leukocytes adhesion and transmigration during leukocytes' inflammatory infiltration. Polarized localization of plasma membrane (PM) phosphatidylinositol-4-phosphate (PtdIns4P) directs the polarization of RPH3A, which contains a PtdIns4P binding site. Consequently, RPH3A mediates the RAB21 and PIP5K1C90 polarization, which is important for neutrophil adhesion to endothelia during inflammation. However, the mechanism by which RPH3A is recruited only to PM PtdIns4P rather than Golgi PtdIns4P remains unclear. By using ADP-ribosylation factor 6 (ARF6) small interfering RNA, ARF6 dominant-negative mutant ARF6(T27N), and ARF6 activation inhibitor SecinH3, we demonstrate that ARF6 plays an important role in the polarization of RPH3A, RAB21, and PIP5K1C90 in murine neutrophils. PM ARF6 is polarized and colocalized with RPH3A, RAB21, PIP5K1C90, and PM PtdIns4P in mouse and human neutrophils upon integrin stimulation. Additionally, ARF6 binds to RPH3A and enhances the interaction between the PM PtdIns4P and RPH3A. Consistent with functional roles of polarization of RPH3A, Rab21, and PIP5K1C90, ARF6 is also required for neutrophil adhesion on the inflamed endothelial layer. Our study reveals a previously unknown role of ARF6 in neutrophil polarization as being the coincidence-detection code with PM PtdIns4P. Cooperation of ARF6 and PM PtdIns4P direct RPH3A polarization, which is important for neutrophil firm adhesion to endothelia.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Endotélio/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Ativação de Neutrófilo , Neutrófilos/imunologia , Proteínas de Transporte Vesicular/metabolismo , Fator 6 de Ribosilação do ADP , Animais , Adesão Celular/imunologia , Linhagem Celular , Membrana Celular/metabolismo , Movimento Celular/imunologia , Células Endoteliais , Endotélio/citologia , Endotélio/imunologia , Feminino , Voluntários Saudáveis , Humanos , Camundongos , Neutrófilos/citologia , Neutrófilos/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Cultura Primária de Células , Rabfilina-3A
8.
Immunity ; 34(6): 893-904, 2011 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-21683628

RESUMO

Mast cells are major effectors in high-affinity IgE receptor (FcɛRI)-dependent allergic reactions. Here we show that phospholipase C (PLC)-ß3 is crucial for FcɛRI-mediated mast cell activation. Plcb3(-/-) mice showed blunted FcɛRI-dependent late-phase, but not acute, anaphylactic responses and airway inflammation. Accordingly, FcɛRI stimulation of Plcb3(-/-) mast cells exhibited reduced cytokine production but normal degranulation. Reduced cytokine production in Plcb3(-/-) cells could be accounted for by increased activity of the negative regulatory Src family kinase Lyn and reduced activities of the positive regulatory protein kinases MAPKs. Mechanistically, PLC-ß3 constitutively interacts with FcɛRI, Lyn, and SHP-1 (protein phosphatase). SHP-1 probably recognizes its substrates Lyn and MAPKs via the recently described kinase tyrosine-based inhibitory motif, KTIM. Consistent with PLC-ß3- and SHP-1-mediated repression of Lyn activity by dephosphorylation at Tyr396, FcɛRI-mediated phenotypes were similar in Plcb3(-/-) and SHP-1 mutant mast cells. Thus, we have defined a PLC-ß3- and SHP-1-mediated signaling pathway for FcɛRI-mediated cytokine production.


Assuntos
Mastócitos/imunologia , Fosfolipase C beta/imunologia , Proteína Tirosina Fosfatase não Receptora Tipo 6/imunologia , Receptores de IgE/imunologia , Animais , Movimento Celular , Células Cultivadas , Citocinas/biossíntese , Citocinas/imunologia , Mastócitos/citologia , Camundongos , Camundongos Knockout , Mutação , Fosfolipase C beta/deficiência , Fosfotirosina/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/genética , Transdução de Sinais , Quinases da Família src/imunologia
9.
J Biol Chem ; 293(14): 5335-5344, 2018 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-29462785

RESUMO

The Wnt/ß-catenin pathway is essential for embryonic development and homeostasis, but excessive activation of this pathway is frequently observed in various human diseases, including cancer. Current therapeutic drugs targeting the Wnt pathway often lack sufficient efficacy, and new compounds targeting this pathway are therefore greatly needed. Here we report that the plant-derived natural product parthenolide (PTL), a sesquiterpene lactone, inhibits Wnt signaling. We found that PTL dose-dependently inhibits Wnt3a- and CHIR99021-induced transcriptional activity assessed with the T-cell factor (TCF)/lymphoid enhancer factor (LEF) firefly luciferase (TOPFlash) assay in HEK293 cells. Further investigations revealed that PTL decreases the levels of the transcription factors TCF4/LEF1 without affecting ß-catenin stability or subcellular distribution. Moreover, this effect of PTL on TCF4/LEF1 was related to protein synthesis rather than to proteasome-mediated degradation. Of note, siRNA-mediated knockdown of RPL10, a ribosome protein PTL binds, substantially decreased TCF4/LEF1 protein levels and also Wnt3a-induced TOPFlash activities, suggesting a potential mechanism by which PTL may repress Wnt/ß-catenin signaling. In summary, PTL binds RPL10 and thereby potently inhibits the Wnt/ß-catenin pathway.


Assuntos
Lactonas/farmacologia , Sesquiterpenos/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , Linhagem Celular Tumoral , Células HEK293 , Humanos , Lactonas/metabolismo , Fator 1 de Ligação ao Facilitador Linfoide/efeitos dos fármacos , Fator 1 de Ligação ao Facilitador Linfoide/genética , Regiões Promotoras Genéticas/genética , Proteína Ribossômica L10 , Proteínas Ribossômicas/efeitos dos fármacos , Proteínas Ribossômicas/metabolismo , Sesquiterpenos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição 4/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Ativação Transcricional/genética , beta Catenina/efeitos dos fármacos
10.
J Biol Chem ; 293(33): 12690-12702, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-29929985

RESUMO

Neutrophils are white blood cells that are mobilized to damaged tissues and to sites of pathogen invasion, providing the first line of host defense. Chemokines displayed on the surface of blood vessels promote migration of neutrophils to these sites, and tissue- and pathogen-derived chemoattractant signals, including N-formylmethionylleucylphenylalanine (fMLP), elicit further migration to sites of infection. Although nearly all chemoattractant receptors use heterotrimeric G proteins to transmit signals, many of the mechanisms lying downstream of chemoattractant receptors that either promote or limit neutrophil motility are incompletely defined. Here, we show that regulator of G protein signaling 5 (RGS5), a protein that modulates G protein activity, is expressed in both human and murine neutrophils. We detected significantly more neutrophils in the airways of Rgs5-/- mice than WT counterparts following acute respiratory virus infection and in the peritoneum in response to injection of thioglycollate, a biochemical proinflammatory stimulus. RGS5-deficient neutrophils responded with increased chemotaxis elicited by the chemokines CXC motif chemokine ligand 1 (CXCL1), CXCL2, and CXCL12 but not fMLP. Moreover, adhesion of these cells was increased in the presence of both CXCL2 and fMLP. In summary, our results indicate that RGS5 deficiency increases chemotaxis and adhesion, leading to more efficient neutrophil mobilization to inflamed tissues in mice. These findings suggest that RGS5 expression and activity in neutrophils determine their migrational patterns in the complex microenvironments characteristic of inflamed tissues.


Assuntos
Fatores Quimiotáticos/metabolismo , Quimiotaxia , Neutrófilos/patologia , Proteínas RGS/metabolismo , Proteínas RGS/fisiologia , Animais , Adesão Celular , Movimento Celular , Células Cultivadas , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , N-Formilmetionina Leucil-Fenilalanina/metabolismo , Neutrófilos/metabolismo , Transdução de Sinais
11.
Immunity ; 33(3): 340-50, 2010 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-20850356

RESUMO

Neutrophils are important in innate immunity and acute inflammatory responses. However, the regulation of their recruitment to sites of inflammation has not been well characterized. Here, we investigated the kinase PIP5K1C and showed that PIP5K1C deficiency impaired neutrophil recruitment because of an adhesion defect. PIP5K1C regulated the adhesion through facilitating RhoA GTPase and integrin activation by chemoattractants. Integrins could induce polarization of an isoform of PIP5K1C, PIP5K1C-90, in neutrophils through intracellular vesicle transport independently of exogenous chemoattractant. PIP5K1C-90 polarization was required for polarized RhoA activation at uropods and provided an initial directional cue for neutrophil polarization on the endothelium. Importantly, the polarization was also required for circumventing the inhibition of lamellipodium formation by RhoA so that neutrophils could form leading edges required for transendothelial migration. Because integrins are not known to regulate neutrophil polarization, our study revealed a previously underappreciated role of integrin signaling in neutrophil regulation.


Assuntos
Integrinas/fisiologia , Infiltração de Neutrófilos , Neutrófilos/fisiologia , Fosfotransferases (Aceptor do Grupo Álcool)/fisiologia , Animais , Adesão Celular , Movimento Celular , Polaridade Celular , Quimiotaxia de Leucócito , Células Endoteliais/fisiologia , Camundongos , N-Formilmetionina Leucil-Fenilalanina/farmacologia , Neutrófilos/citologia , Neutrófilos/imunologia , Fosforilação , Vesículas Transportadoras/fisiologia , Proteínas rho de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP
12.
Biochem J ; 475(14): 2257-2269, 2018 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-29959184

RESUMO

Signaling molecule phosphatidylinositol 4,5-bisphosphate is produced primarily by phosphatidylinositol 4-phosphate 5-kinase (PIP5K). PIP5K is essential for the development of the human neuronal system, which has been exemplified by a recessive genetic disorder, lethal congenital contractural syndrome type 3, caused by a single aspartate-to-asparagine mutation in the kinase domain of PIP5Kγ. So far, the exact role of this aspartate residue has yet to be elucidated. In this work, we conducted structural, functional and computational studies on a zebrafish PIP5Kα variant with a mutation at the same site. Compared with the structure of the wild-type (WT) protein in the ATP-bound state, the ATP-associating glycine-rich loop of the mutant protein was severely disordered and the temperature factor of ATP was significantly higher. Both observations suggest a greater degree of disorder of the bound ATP, whereas neither the structure of the catalytic site nor the Km toward ATP was substantially affected by the mutation. Microsecond molecular dynamics simulation revealed that negative charge elimination caused by the mutation destabilized the involved hydrogen bonds and affected key electrostatic interactions in the close proximity of ATP. Taken together, our data indicated that the disease-related aspartate residue is a key node in the interaction network crucial for effective ATP binding. This work provides a paradigm of how a subtle but critical structural perturbation caused by a single mutation at the ATP-binding site abolishes the kinase activity, emphasizing that stabilizing substrate in a productive conformational state is crucial for catalysis.


Assuntos
Contratura/enzimologia , Simulação de Dinâmica Molecular , Atrofia Muscular/enzimologia , Mutação , Fosfotransferases (Aceptor do Grupo Álcool)/química , Proteínas de Peixe-Zebra/química , Peixe-Zebra , Trifosfato de Adenosina/química , Trifosfato de Adenosina/genética , Animais , Contratura/genética , Humanos , Atrofia Muscular/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Domínios Proteicos , Proteínas de Peixe-Zebra/genética
13.
Proc Natl Acad Sci U S A ; 113(31): 8711-6, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27439870

RESUMO

The phosphatidylinositol phosphate kinase (PIPK) family of enzymes is primarily responsible for converting singly phosphorylated phosphatidylinositol derivatives to phosphatidylinositol bisphosphates. As such, these kinases are central to many signaling and membrane trafficking processes in the eukaryotic cell. The three types of phosphatidylinositol phosphate kinases are homologous in sequence but differ in catalytic activities and biological functions. Type I and type II kinases generate phosphatidylinositol 4,5-bisphosphate from phosphatidylinositol 4-phosphate and phosphatidylinositol 5-phosphate, respectively, whereas the type III kinase produces phosphatidylinositol 3,5-bisphosphate from phosphatidylinositol 3-phosphate. Based on crystallographic analysis of the zebrafish type I kinase PIP5Kα, we identified a structural motif unique to the kinase family that serves to recognize the monophosphate on the substrate. Our data indicate that the complex pattern of substrate recognition and phosphorylation results from the interplay between the monophosphate binding site and the specificity loop: the specificity loop functions to recognize different orientations of the inositol ring, whereas residues flanking the phosphate binding Arg244 determine whether phosphatidylinositol 3-phosphate is exclusively bound and phosphorylated at the 5-position. This work provides a thorough picture of how PIPKs achieve their exquisite substrate specificity.


Assuntos
Fosfatos de Fosfatidilinositol/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Sítios de Ligação/genética , Cristalografia por Raios X , Modelos Moleculares , Fosfatos de Fosfatidilinositol/química , Fosfatidilinositóis/química , Fosfatidilinositóis/metabolismo , Fosforilação , Fosfotransferases (Aceptor do Grupo Álcool)/química , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Ligação Proteica , Domínios Proteicos , Especificidade por Substrato , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/genética
14.
Blood ; 127(3): 314-24, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26468229

RESUMO

Chemokines are required for leukocyte recruitment and appropriate host defense and act through G protein-coupled receptors (GPCRs), which induce downstream signaling leading to integrin activation. Although the α and ß subunits of the GPCRs are the first intracellular molecules that transduce signals after ligand binding and are therefore indispensable for downstream signaling, relatively little is known about their contribution to lymphocyte function-associated antigen 1 (LFA-1) activation and leukocyte recruitment. We used knockout mice and short hairpin RNA to knock down guanine nucleotide binding protein (GNB) isoforms (GNB1, GNB2, GNB4, and GNB5) in HL60 cells and primary murine hematopoietic cells. Neutrophil function was assessed by using intravital microscopy, flow chamber assays, and chemotaxis and biochemistry studies. We unexpectedly discovered that all expressed GNB isoforms are required for LFA-1 activation. Their downregulation led to a significant impairment of LFA-1 activation, which was demonstrated in vitro and in vivo. Furthermore, we showed that GPCR activation leads to Ras-related C3 botulinum toxin substrate 1 (Rac1)-dependent activation of both phospholipase C ß2 (Plcß2) and Plcß3. They act nonredundantly to produce inositol triphosphate-mediated intracellular Ca(2+) flux and LFA-1 activation that support chemokine-induced arrest in vivo. In a complex inflammatory disease model, Plcß2-, Plcß3-, or Rac1-deficient mice were protected from lipopolysaccharide-induced lung injury. Taken together, we demonstrated that all Gnb isoforms are required for chemokine-induced downstream signaling, and Rac1, Plcß2, and Plcß3 are critically involved in integrin activation and leukocyte arrest.


Assuntos
Pontos de Checagem do Ciclo Celular , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Antígeno-1 Associado à Função Linfocitária/metabolismo , Neutrófilos/metabolismo , Fosfolipase C beta/metabolismo , Transdução de Sinais , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Antígenos de Superfície/genética , Antígenos de Superfície/metabolismo , Cálcio/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular , Quimiocinas/farmacologia , Quimiotaxia/efeitos dos fármacos , Quimiotaxia/genética , Quimiotaxia/imunologia , Modelos Animais de Doenças , Regulação para Baixo , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/genética , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/genética , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Lipopolissacarídeos/efeitos adversos , Camundongos , Modelos Biológicos , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Fosfolipase C beta/genética , Pneumonia/induzido quimicamente , Pneumonia/genética , Pneumonia/imunologia , Pneumonia/metabolismo , Ligação Proteica , Isoformas de Proteínas , RNA Interferente Pequeno/genética , Receptores Acoplados a Proteínas G/metabolismo , Proteínas rac1 de Ligação ao GTP/genética
15.
Proc Natl Acad Sci U S A ; 112(31): 9644-9, 2015 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-26195787

RESUMO

The serine-threonine kinase Akt is a key regulator of cell proliferation and survival, glucose metabolism, cell mobility, and tumorigenesis. Activation of Akt by extracellular stimuli such as insulin centers on the interaction of Akt with PIP3 on the plasma membrane, where it is subsequently phosphorylated and activated by upstream protein kinases. However, it is not known how Akt is recruited to the plasma membrane upon stimulation. Here we report that ubiquitin-like protein 4A (Ubl4A) plays a crucial role in insulin-induced Akt plasma membrane translocation. Ubl4A knockout newborn mice have defective Akt-dependent glycogen synthesis and increased neonatal mortality. Loss of Ubl4A results in the impairment of insulin-induced Akt translocation to the plasma membrane and activation. Akt binds actin-filaments and colocalizes with actin-related protein 2 and 3 (Arp2/3) complex in the membrane ruffles and lamellipodia. Ubl4A directly interacts with Arp2/3 to accelerate actin branching and networking, allowing Akt to be in close proximity to the plasma membrane for activation upon insulin stimulation. Our finding reveals a new mechanism by which Akt is recruited to the plasma membrane for activation, thereby providing a missing link in Akt signaling.


Assuntos
Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Membrana Celular/enzimologia , Insulina/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ubiquitinas/metabolismo , Actinas/metabolismo , Animais , Animais Recém-Nascidos , Membrana Celular/efeitos dos fármacos , Quimiotaxia/efeitos dos fármacos , Embrião de Mamíferos/citologia , Ativação Enzimática/efeitos dos fármacos , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Glicogênio/biossíntese , Proteínas de Fluorescência Verde/metabolismo , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/citologia , Neutrófilos/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Pseudópodes/efeitos dos fármacos , Pseudópodes/metabolismo , Ubiquitinas/deficiência
16.
Proc Natl Acad Sci U S A ; 112(41): 12812-7, 2015 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-26417068

RESUMO

The contribution of endothelial-derived miR-17∼92 to ischemia-induced arteriogenesis has not been investigated in an in vivo model. In the present study, we demonstrate a critical role for the endothelial-derived miR-17∼92 cluster in shaping physiological and ischemia-triggered arteriogenesis. Endothelial-specific deletion of miR-17∼92 results in an increase in collateral density limbs and hearts and in ischemic limbs compared with control mice, and consequently improves blood flow recovery. Individual cluster components positively or negatively regulate endothelial cell (EC) functions in vitro, and, remarkably, ECs lacking the cluster spontaneously form cords in a manner rescued by miR-17a, -18a, and -19a. Using both in vitro and in vivo analyses, we identified FZD4 and LRP6 as targets of miR-19a/b. Both of these targets were up-regulated in 17∼92 KO ECs compared with control ECs, and both were shown to be targeted by miR-19 using luciferase assays. We demonstrate that miR-19a negatively regulates FZD4, its coreceptor LRP6, and WNT signaling, and that antagonism of miR-19a/b in aged mice improves blood flow recovery after ischemia and reduces repression of these targets. Collectively, these data provide insights into miRNA regulation of arterialization and highlight the importance of vascular WNT signaling in maintaining arterial blood flow.


Assuntos
Receptores Frizzled/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , MicroRNAs/metabolismo , Família Multigênica/fisiologia , Neovascularização Fisiológica/fisiologia , Via de Sinalização Wnt/fisiologia , Animais , Receptores Frizzled/genética , Isquemia/genética , Isquemia/metabolismo , Isquemia/patologia , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Camundongos , Camundongos Knockout , MicroRNAs/genética
17.
J Cell Mol Med ; 21(8): 1619-1635, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28244683

RESUMO

Although translational research into autosomal dominant polycystic kidney disease (ADPKD) and its pathogenesis has made considerable progress, there is presently lack of standardized animal model for preclinical trials. In this study, we developed an orthologous mouse model of human ADPKD by cross-mating Pkd2 conditional-knockout mice (Pkd2f3 ) to Cre transgenic mice in which Cre is driven by a spectrum of kidney-related promoters. By systematically characterizing the mouse model, we found that Pkd2f3/f3 mice with a Cre transgene driven by the mouse villin-1 promoter (Vil-Cre;Pkd2f3/f3 ) develop overt cysts in the kidney, liver and pancreas and die of end-stage renal disease (ESRD) at 4-6 months of age. To determine whether these Vil-Cre;Pkd2f3/f3 mice were suitable for preclinical trials, we treated the mice with the high-dose mammalian target of rapamycin (mTOR) inhibitor rapamycin. High-dose rapamycin significantly increased the lifespan, lowered the cystic index and kidney/body weight ratio and improved renal function in Vil-Cre;Pkd2f3/f3 mice in a time- and dose-dependent manner. In addition, we further found that rapamycin arrested aberrant epithelial-cell proliferation in the ADPKD kidney by down-regulating the cell-cycle-associated cyclin-dependent kinase 1 (CDK1) and cyclins, namely cyclin A, cyclin B, cyclin D1 and cyclin E, demonstrating a direct link between mTOR signalling changes and the polycystin-2 dysfunction in cystogenesis. Our newly developed ADPKD model provides a practical platform for translating in vivo preclinical results into ADPKD therapies. The newly defined molecular mechanism by which rapamycin suppresses proliferation via inhibiting abnormally elevated CDK1 and cyclins offers clues to new molecular targets for ADPKD treatment.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Proteína Quinase CDC2/antagonistas & inibidores , Ciclo Celular/efeitos dos fármacos , Ciclinas/antagonistas & inibidores , Rim Policístico Autossômico Dominante/tratamento farmacológico , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Animais , Proteína Quinase CDC2/genética , Proteína Quinase CDC2/metabolismo , Ciclinas/genética , Ciclinas/metabolismo , Relação Dose-Resposta a Droga , Feminino , Efeito Fundador , Regulação da Expressão Gênica , Humanos , Integrases/genética , Integrases/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Masculino , Camundongos , Camundongos Transgênicos , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/metabolismo , Rim Policístico Autossômico Dominante/patologia , Regiões Promotoras Genéticas , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Canais de Cátion TRPP/antagonistas & inibidores , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismo
18.
J Cell Sci ; 128(5): 992-1000, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25588844

RESUMO

A hallmark of neutrophil polarization is the back localization of active RHOA and phosphorylated myosin light chain (pMLC, also known as MYL2). However, the mechanism for the polarization is not entirely clear. Here, we show that FAM65B, a newly identified RHOA inhibitor, is important for the polarization. When FAM65B is phosphorylated, it binds to 14-3-3 family proteins and becomes more stable. In neutrophils, chemoattractants stimulate FAM65B phosphorylation largely depending on the signals from the front of the cells that include those mediated by phospholipase Cß (PLCß) and phosphoinositide 3-kinase γ (PI3Kγ), leading to FAM65B accumulation at the leading edge. Concordantly, FAM65B deficiency in neutrophils resulted in an increase in RHOA activity and localization of pMLC to the front of cells, as well as defects in chemotaxis directionality and adhesion to endothelial cells under flow. These data together elucidate a mechanism for RHOA and pMLC polarization in stimulated neutrophils through direct inhibition of RHOA by FAM65B at the leading edge.


Assuntos
Neutrófilos/metabolismo , Proteínas/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Adesão Celular/fisiologia , Moléculas de Adesão Celular , Quimiotaxia/fisiologia , Classe Ib de Fosfatidilinositol 3-Quinase , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Cadeias Leves de Miosina/genética , Cadeias Leves de Miosina/metabolismo , Neutrófilos/citologia , Fosfolipase C beta/genética , Fosfolipase C beta/metabolismo , Fosforilação/fisiologia , Proteínas/genética , Proteínas rho de Ligação ao GTP/antagonistas & inibidores , Proteínas rho de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/antagonistas & inibidores , Proteína rhoA de Ligação ao GTP/genética
19.
J Biol Chem ; 290(51): 30596-606, 2015 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-26504084

RESUMO

Frizzled is the earliest discovered glycosylated Wnt protein receptor and is critical for the initiation of Wnt signaling. Antagonizing Frizzled is effective in inhibiting the growth of multiple tumor types. The extracellular N terminus of Frizzled contains a conserved cysteine-rich domain that directly interacts with Wnt ligands. Structure-based virtual screening and cell-based assays were used to identify five small molecules that can inhibit canonical Wnt signaling and have low IC50 values in the micromolar range. NMR experiments confirmed that these compounds specifically bind to the Wnt binding site on the Frizzled8 cysteine-rich domain with submicromolar dissociation constants. Our study confirms the feasibility of targeting the Frizzled cysteine-rich domain as an effective way of regulating canonical Wnt signaling. These small molecules can be further optimized into more potent therapeutic agents for regulating abnormal Wnt signaling by targeting Frizzled.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Receptores Frizzled/antagonistas & inibidores , Receptores Frizzled/química , Simulação de Acoplamento Molecular , Via de Sinalização Wnt/efeitos dos fármacos , Células 3T3 , Animais , Sítios de Ligação , Ensaios de Seleção de Medicamentos Antitumorais , Células HEK293 , Humanos , Camundongos , Ressonância Magnética Nuclear Biomolecular , Estrutura Terciária de Proteína
20.
Am J Pathol ; 185(10): 2843-60, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26435415

RESUMO

Although much is known about the molecular genetic mechanisms of autosomal-dominant polycystic kidney disease (ADPKD), few effective treatment is currently available. Here, we explore the in vivo effects of causal gene replacement in orthologous gene models of ADPKD in mice. Wild-type mice with human PKD2 transgene (PKD2(tg)) overexpressed polycystin (PC)-2 in several tissues, including the kidney and liver, and showed no significant cyst formation in either organ. We cross-mated PKD2(tg) with a Pkd2-null mouse model, which is embryonically lethal and forms renal and pancreatic cysts. Pkd2(-/-) mice with human PKD2 transgene (Pkd2(-/-);PKD2(tg)) were born in expected Mendelian ratios, indicating that the embryonic lethality of the Pkd2(-/-) mice was rescued. Pkd2(-/-);PKD2(tg) mice survived up to 12 months and exhibited moderate to severe cystic phenotypes of the kidney, liver, and pancreas. Moreover, Pkd2(-/-) mice with homozygous PKD2(tg)-transgene alleles (Pkd2(-/-);PKD2(tg/tg)) showed significant further amelioration of the cystic severity compared to that in Pkd2(-/-) mice with a hemizygous PKD2(tg) allele (Pkd2(-/-);PKD2(tg)), suggesting that the ADPKD phenotype was improved by increased transgene dosage. On further analysis, cystic improvement mainly resulted from reduced proliferation, rather apoptosis, of cyst-prone epithelial cells in the mouse model. The finding that the functional restoration of human PC2 significantly rescued ADPKD phenotypes in a dose-dependent manner suggests that increasing PC2 activity may be beneficial in some forms of ADPKD.


Assuntos
Rim/patologia , Mutação/genética , Rim Policístico Autossômico Dominante/genética , Canais de Cátion TRPP/genética , Animais , Proliferação de Células/genética , Cistos/genética , Modelos Animais de Doenças , Humanos , Rim/metabolismo , Camundongos Knockout , Camundongos Transgênicos , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA