Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 170
Filtrar
1.
Chem Rev ; 124(9): 5695-5763, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38629390

RESUMO

The properties of colloidal quantum-confined semiconductor nanocrystals (NCs), including zero-dimensional (0D) quantum dots, 1D nanorods, 2D nanoplatelets, and their heterostructures, can be tuned through their size, dimensionality, and material composition. In their photovoltaic and photocatalytic applications, a key step is to generate spatially separated and long-lived electrons and holes by interfacial charge transfer. These charge transfer properties have been extensively studied recently, which is the subject of this Review. The Review starts with a summary of the electronic structure and optical properties of 0D-2D nanocrystals, followed by the advances in wave function engineering, a novel way to control the spatial distribution of electrons and holes, through their size, dimension, and composition. It discusses the dependence of NC charge transfer on various parameters and the development of the Auger-assisted charge transfer model. Recent advances in understanding multiple exciton generation, decay, and dissociation are also discussed, with an emphasis on multiple carrier transfer. Finally, the applications of nanocrystal-based systems for photocatalysis are reviewed, focusing on the photodriven charge separation and recombination processes that dictate the function and performance of these materials. The Review ends with a summary and outlook of key remaining challenges and promising future directions in the field.

2.
Nat Mater ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951651

RESUMO

Solution-processed colloidal nanocrystals of lead halide perovskites have been intensively investigated in recent years in the context of optoelectronic devices, during which time their quantum properties have also begun to attract attention. Their unmatched ease of synthetic tunability and unique structural, optical and electronic properties, in conjunction with the confinement of carriers in three dimensions, have motivated studies on observing and controlling coherent light-matter interaction in these materials for quantum information technologies. This Review outlines the recent efforts and achievements in this direction. Particularly notable examples are the observation of coherent single-photon emission, evidence for superfluorescence and the realization of room-temperature coherent spin manipulation for ensemble samples, which have not been achieved for prototypical colloidal CdSe nanocrystals that have been under investigation for decades. This Review aims to highlight these results, point out the challenges ahead towards realistic applications and bring together the efforts of multidisciplinary communities in this nascent field.

3.
J Am Chem Soc ; 146(28): 19360-19368, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39015060

RESUMO

High-efficiency generation of spin-triplet states in organic molecules is of great interest in diverse areas such as photocatalysis, photodynamic therapy, and upconversion photonics. Recent studies have introduced colloidal semiconductor nanocrystals as a new class of photosensitizers that can efficiently transfer their photoexcitation energy to molecular triplets. Here, we demonstrate that metallic Ag nanoparticles can also assist in the generation of molecular triplets in polycyclic aromatic hydrocarbons (PAHs), but not through a conventional sensitization mechanism. Instead, the triplet formation is mediated by charge-separated states resulting from hole transfer from photoexcited PAHs (anthracene and pyrene) to Ag nanoparticles, which is established through the rapid formation and subsequent decay of molecular anions revealed in our transient absorption measurements. The dominance of hole transfer over electron transfer, while both are energetically allowed, could be attributed to a Marcus inverted region of charge transfer. Owing to the rapid charge separation and the rapid spin-flip in metals, the triplet formation yields are remarkably high, as confirmed by their engagement in production of singlet oxygen with a quantum efficiency reaching 58.5%. This study not only uncovers the fundamental interaction mechanisms between metallic nanoparticles and organic molecules in both charge and spin degrees of freedom but also greatly expands the scope of triplet "sensitization" using inorganic nanomaterials for a variety of emerging applications.

4.
Cell Mol Biol Lett ; 29(1): 58, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38649803

RESUMO

Non-small cell lung cancer (NSCLC), characterized by low survival rates and a high recurrence rate, is a major cause of cancer-related mortality. Aberrant activation of the PI3K/AKT/mTOR signaling pathway is a common driver of NSCLC. Within this study, the inhibitory activity of (+)-anthrabenzoxocinone ((+)-ABX), an oxygenated anthrabenzoxocinone compound derived from Streptomyces, against NSCLC is demonstrated for the first time both in vitro and in vivo. Mechanistically, it is confirmed that the PI3K/AKT/mTOR signaling pathway is targeted and suppressed by (+)-ABX, resulting in the induction of S and G2/M phase arrest, apoptosis, and autophagy in NSCLC cells. Additionally, the augmentation of intracellular ROS levels by (+)-ABX is revealed, further contributing to the inhibition of the signaling pathway and exerting inhibitory effects on tumor growth. The findings presented in this study suggest that (+)-ABX possesses the potential to serve as a lead compound for the treatment of NSCLC.


Assuntos
Apoptose , Autofagia , Carcinoma Pulmonar de Células não Pequenas , Pontos de Checagem do Ciclo Celular , Neoplasias Pulmonares , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Serina-Treonina Quinases TOR/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Humanos , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Transdução de Sinais/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Animais , Linhagem Celular Tumoral , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Camundongos Nus , Camundongos , Proliferação de Células/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Ensaios Antitumorais Modelo de Xenoenxerto , Espécies Reativas de Oxigênio/metabolismo , Antineoplásicos/farmacologia
5.
Nano Lett ; 23(8): 3540-3548, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37026801

RESUMO

Surface plasmon resonance-induced charge separation plays key roles in plasmon-related applications, especially in photocatalysis and photovoltaics. Plasmon coupling nanostructures exhibit extraordinary behaviors in hybrid states, phonon scattering, and ultrafast plasmon dephasing, but plasmon-induced charge separation in these materials remains unknown. Here, we design Schottky-free Au nanoparticle (NP)/NiO/Au nanoparticles-on-a-mirror plasmonic photocatalysts to support plasmon-induced interfacial hole transfer, evidenced by surface photovoltage microscopy at the single-particle level. In particular, we observe a nonlinear increase in charge density and photocatalytic performance with an increase in excitation intensity in plasmonic photocatalysts containing hot spots as a result of varying the geometry. Such charge separation increased the internal quantum efficiency by 14 times at 600 nm in catalytic reactions as compared to that of the Au NP/NiO without a coupling effect. These observations provide an improved understanding of charge transfer management and utilization by geometric engineering and interface electronic structure for plasmonic photocatalysis.

6.
Nano Lett ; 23(7): 2905-2914, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36961203

RESUMO

Strain engineering is an attractive strategy for improving the intrinsic catalytic performance of heterogeneous catalysts. Manipulating strain on the short-range atomic scale to the local structure of the catalytic sites is still challenging. Herein, we successfully achieved atomic strain modulation on ultrathin layered vanadium oxide nanoribbons by an ingenious intercalation chemistry method. When trace sodium cations were introduced between the V2O5 layers (Na+-V2O5), the V-O bonds were stretched by the atomically strained vanadium sites, redistributing the local charges. The Na+-V2O5 demonstrated excellent photooxidation performance, which was approximately 12 and 14 times higher than that of pristine V2O5 and VO2, respectively. Complementary spectroscopy analysis and theoretical calculations confirmed that the atomically strained Na+-V2O5 had a high surficial charge density, improving the activation of oxygen molecules and contributing to the excellent photocatalytic property. This work provides a new approach for the rational design of strain-equipped catalysts for selective photooxidation reactions.

7.
Angew Chem Int Ed Engl ; : e202407448, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38782721

RESUMO

Controlling the interplay between relaxation and charge/energy transfer processes in the excited states of photocatalysts is crucial for the performance of artificial photosynthesis. Metal-to-ligand charge-transfer triplet states (3MLCT*) of ruthenium(II) complexes are broadly implemented for photocatalysis, but an effective means of managing the triplets for enhanced photocatalysis has been lacking. Herein, We proposed a strategy to considerably prolong the triplet excited-state lifetime by decorating a ruthenium(II) phosphine complex (RuP-1) with pendent polyaromatic hydrocarbons (PAHs). Systematic studies demonstrate that in RuP-4 decorated with anthracene, sub-picosecond electron transfer from anthracene to 3MLCT* leads to a charge-separated state that can mediate the formation of the intra-ligand triplet state (3IL) of anthracene, resulting in an exceptionally long excited-state up to several milliseconds. This triplet management strategy enables impressive photocatalytic reduction of CO2 to CO with a turnover number (TON) of 404, an optimized quantum yield of 43 % and 100 % selectivity, which is the highest reported performance for mononuclear photocatalysts without additional photosensitizers. RuP-4 also catalyzes photochemical hydrogen generation under argon. This work opens up an avenue for regulating the excited-state charge/energy flow for the development of long-lived 3IL multi-functional mononuclear photocatalysts to boost artificial photosynthesis.

8.
Angew Chem Int Ed Engl ; 63(25): e202403927, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632085

RESUMO

All-inorganic metal halides with afterglow emission have attracted increasing attention due to their significantly longer afterglow duration and higher stability compared to their organic-inorganic hybrid counterparts. However, their afterglow colors have not yet reached the blue spectral region. Here, we report all-inorganic copper-doped Rb2AgBr3 single crystals with ultralong blue afterglow (>300 s) by modulating defect states through doping engineering. The introduction of copper(I) ions into Rb2AgBr3 facilitates the formation of bromine vacancies, thus increasing the density of trap states available for charge storage and enabling bright, persistent emission after ceasing the excitation. Moreover, cascade energy transfer between distinct emissive centers in the crystals results in ultra-broadband photoluminescence, not only covering the whole white light with near-unity quantum yield but also extending into the near-infrared region. This 'cocktail' of exotic light-emission properties, in conjunction with the excellent stability of copper-doped Rb2AgBr3 crystals, allowed us to demonstrate their implementation to solid-state lighting, night vision, and intelligent anti-counterfeiting.

9.
Angew Chem Int Ed Engl ; 63(8): e202319969, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38179817

RESUMO

Most of current metal halide materials, including all inorganic and organic-inorganic hybrids, are crystalline materials with poor workability and plasticity that limit their application scope. Here, we develop a novel class of materials termed polymeric metal halides (PMHs) through introducing polycations into antimony-based metal halide materials as A-site cations. A series of PMHs with orange-yellow broadband emission and large Stokes shift originating from inorganic self-trapped excitons are successfully prepared, which meanwhile exhibit the excellent processability and formability of polymers. The versatility of these PMHs is manifested as the broad choices of polycations, the ready extension to manganese- and copper-based halides, and the tolerance to molar ratios between polycations and metal halides in the formation of PMHs. The merger of polymer chemistry and inorganic chemistry thus provides a novel generic platform for the development of metal halide functional materials.

10.
Angew Chem Int Ed Engl ; 63(26): e202403996, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38679568

RESUMO

Decreasing perovskite nanocrystal size increases radiative recombination due to the quantum confinement effect, but also increases the Auger recombination rate which leads to carrier imbalance in the emitting layers of electroluminescent devices. Here, we overcome this trade-off by increasing the exciton effective mass without affecting the size, which is realized through the trace Cd2+ doping of formamidinium lead bromide perovskite nanocrystals. We observe an ~2.7 times increase in the exciton binding energy benefiting from a slight distortion of the [BX6]4- octahedra caused by doping in the case of that the Auger recombination rate is almost unchanged. As a result, bright color-saturated green emitting perovskite nanocrystals with a photoluminescence quantum yield of 96 % are obtained. Cd2+ doping also shifts up the energy levels of the nanocrystals, relative to the Fermi level so that heavily n-doped emitters convert into only slightly n-doped ones; this boosts the charge injection efficiency of the corresponding light-emitting diodes. The light-emitting devices based on those nanocrystals reached a high external quantum efficiency of 29.4 % corresponding to a current efficiency of 123 cd A-1, and showed dramatically improved device lifetime, with a narrow bandwidth of 22 nm and Commission Internationale de I'Eclairage coordinates of (0.20, 0.76) for color-saturated green emission for the electroluminescence peak centered at 534 nm, thus being fully compliant with the latest standard for wide color gamut displays.

11.
Angew Chem Int Ed Engl ; : e202408769, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38960984

RESUMO

The clinical application of photodynamic therapy (PDT) is limited by oxygen-dependence and side effects caused by photosensitizer residues. Photoinitiators based on the H-abstraction reaction can address these challenges because they can generate alkyl radical-killing cells independently of oxygen and undergo rapid bleaching following H-abstraction. Nonetheless, the development of photoinitiators for PDT has been impeded by the absence of effective design strategies. Herein, we have developed aryl-ketone substituted cyanine (ACy-R), the first red-light triggered H-abstraction photoinitiators for hypoxic cancer therapy. These ACy-R molecules inherited the near-infrared absorption of cyanine dye, and aryl-ketone modification imparted H-abstraction capability. Experimental and quantum calculations revealed that modifying the electron-withdrawing groups of the aryl (e.g., ACy-5F) improved the contribution of the O atom to the photon excitation process promoting intersystem crossing and H-abstraction ability. Particularly, ACy-5F rapidly penetrated cells and enriched in the endoplasmic reticulum. Even under severe hypoxia, ACy-5F initiated red-light induced H-abstraction with intracellular biomolecules, inducing necroptosis and ferroptosis. Moreover, ACy-5F was degraded after H-abstraction, thus avoiding the side effects of long-term phototoxicity after therapy. This study not only provides a crucial molecular tool for hypoxic tumors therapy, but also presents a promising strategy for the development of multifunctional photosensitizers and photoinitiators.

12.
J Am Chem Soc ; 145(47): 25864-25873, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37971813

RESUMO

Optical gain of colloidal quantum dots (QDs) is often attained in the multiexciton regime, which strongly complicates their lasing applications as the gain lifetime is limited by nonradiative Auger recombination occurring typically on the picosecond time scale. In principle, low-threshold gain can be achieved if the gain-active emission has a sizable red shift compared to the absorption. But, this mechanism has been rarely observed in typical QDs featuring small Stokes shift due to their weak electron-phonon coupling. Here, we report the observation of sub-single-exciton gain in CsPbI3 and CsPbBr3 perovskite QDs, which is unequivocally established through pinpointing the stimulated emission and biexciton absorption signatures using polarization-controlled femtosecond transient absorption spectroscopy. The soft lattice of perovskite QDs and hence strong electron-phonon coupling lead to two stimulated emission features from free and self-trapped excitons, respectively. In monodisperse QDs of varying sizes, the Stokes shift of the self-trapped exciton emission is sufficiently large to overcome the biexciton absorption loss and the inhomogeneous line width, enabling optical gain with average exciton occupancy down to <10%.

13.
J Transl Med ; 21(1): 898, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38082290

RESUMO

BACKGROUND: Early microbial exposure is associate with protective allergic asthma. We have previously demonstrated that Streptococcus pneumoniae aminopeptidase N (PepN), one of the pneumococcal components, inhibits ovalbumin (OVA) -induced airway inflammation in murine models of allergic asthma, but the underlying mechanism was incompletely determined. METHODS: BALB/c mice were pretreated with the PepN protein and exposed intranasally to HDM allergen. The anti-inflammatory mechanisms were investigated using depletion and adoptive transfer experiments as well as transcriptome analysis and isolated lung CD11chigh macrophages. RESULTS: We found pretreatment of mice with PepN promoted the proliferation of lung-resident F4/80+CD11chigh macrophages in situ but also mobilized bone marrow monocytes to infiltrate lung tissue that were then transformed into CD11high macrophages. PepN pre-programmed the macrophages during maturation to an anti-inflammatory phenotype by shaping the metabolic preference for oxidative phosphorylation (OXPHOS) and also inhibited the inflammatory response of macrophages by activating AMP-activated protein kinase. Furthermore, PepN treated macrophages also exhibited high-level costimulatory signaling molecules which directed the differentiation into Treg. CONCLUSION: Our results demonstrated that the expansion of CD11chigh macrophages in lungs and the OXPHOS metabolic bias of macrophages are associated with reduced allergic airway inflammation after PepN exposure, which paves the way for its application in preventing allergic asthma.


Assuntos
Asma , Pneumonia , Camundongos , Animais , Streptococcus pneumoniae/metabolismo , Antígenos CD13 , Citocinas/metabolismo , Asma/metabolismo , Pulmão/metabolismo , Inflamação/prevenção & controle , Macrófagos/metabolismo , Anti-Inflamatórios , Fenótipo , Ovalbumina , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C
14.
Nat Mater ; 21(11): 1282-1289, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36075966

RESUMO

Anisotropic exchange splitting in semiconductor quantum dots results in bright-exciton fine-structure splitting important for quantum information processing. Direct measurement of fine-structure splitting usually requires single/few quantum dots at liquid-helium temperature because of its sensitivity to quantum dot size and shape, whereas measuring and controlling fine-structure splitting at an ensemble level seem to be impossible unless all the dots are made to be nearly identical. Here we report strong bright-exciton fine-structure splitting up to 1.6 meV in solution-processed CsPbI3 perovskite quantum dots, manifested as quantum beats in ensemble-level transient absorption at liquid-nitrogen to room temperature. The splitting is robust to quantum dot size and shape heterogeneity, and increases with decreasing temperature, pointing towards a mechanism associated with orthorhombic distortion of the perovskite lattice. Effective-mass-approximation calculations reveal an intrinsic 'fine-structure gap' that agrees well with the observed fine-structure splitting. This gap stems from an avoided crossing of bright excitons confined in orthorhombically distorted quantum dots that are bounded by the pseudocubic {100} family of planes.

15.
J Med Virol ; 95(10): e29157, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37814947

RESUMO

It is known that ribonucleotide reductase M2 (RRM2) could be induced by hepatitis B virus (HBV) via DNA damage response. However, whether RRM2 is a potential biomarker for diagnosing and monitoring liver fibrosis in chronic hepatitis B (CHB) patients is still unclear. In this study, CHB patients from GSE84044 (a transcriptome data from GEO data set) were downloaded and RRM2 was selected as a hub gene. Interestingly, a positive correlation was found between serum RRM2 and liver fibrosis stage. The similar results were found in CHB patients with normal alanine aminotransferase (ALT). Notably, RRM2 could effectively differentiate preliminary fibrosis from advanced fibrosis in CHB patients with/without normal ALT. In addition, RRM2 had a better performance in diagnosing liver fibrosis than two commonly used noninvasive methods (aspartate aminotransferase-to-platelet ratio index and fibrosis index based on the four factors), two classic fibrotic biomarkers (hyaluronic acid and type IV collagen) as well as Mac-2 binding protein glycosylation isomer, a known serum fibrosis marker. Moreover, CHB patients with high RRM2, who were associated with advanced fibrosis, had higher expressions of immune checkpoints. Overall, serum RRM2 may be a promising biomarker for diagnosing and monitoring liver fibrosis in CHB patients.


Assuntos
Hepatite B Crônica , Humanos , Hepatite B Crônica/complicações , Hepatite B Crônica/diagnóstico , Curva ROC , Cirrose Hepática , Fígado/patologia , Vírus da Hepatite B , Fibrose , Biomarcadores , Alanina Transaminase
16.
BMC Pulm Med ; 23(1): 360, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37749553

RESUMO

BACKGROUND: Metformin is the most frequently prescribed medication for the treatment of type II diabetes mellitus and has played an anti-tumor potential in a variety of cancer types. Metformin can inhibit the growth of many cancer cells through various mechanisms, including ferroptosis. However, it is still unclear whether metformin can induce ferroptosis in lung cancer. METHODS: This study evaluated the anti-tumor effect of metformin by detecting the levels of oxidative stress factors, the levels of ferrous ions, and the expression of ferroptosis-related genes in A549 and H1299 lung cancer cell lines treated with or without metformin. RESULTS: The results showed that metformin treatment increased the levels of MDA, ROS and iron ions, while decreased the levels of GSH, T-SOD and CAT. Meanwhile, metformin treatment reduced the protein expression levels of Gpx4 and SLC7A11, Nrf2 and HO-1, while the addition of ferroptosis inhibitor ferrostatin-1 reversed the reduction. CONCLUSIONS: These results demonstrated that metformin exerts anti-tumor effects by inducing ferroptosis through the Nrf2/HO-1 signaling pathway in lung cancer cells, providing a theoretical basis for drug therapy of lung cancer patients.


Assuntos
Ferroptose , Neoplasias Pulmonares , Metformina , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Metformina/farmacologia , Fator 2 Relacionado a NF-E2 , Transdução de Sinais , Linhagem Celular Tumoral
17.
Nano Lett ; 22(3): 1338-1344, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35049298

RESUMO

Quasi-2D perovskites, composed of self-organized quantum well structures, are emerging as gain materials for laser applications. Here we investigate the influence of domain distribution on the laser emission of CsPbCl1.5Br1.5-based quasi-2D perovskites. The use of 2,2-diphenylethylammonium bromide (DPEABr) as a ligand enables the formation of quasi-2D film with a large-n-dominated narrow domain distribution. Due to the reduced content of small-n domains, the incomplete energy transfer from small-n to large-n domains can be greatly addressed. Moreover, the photoinduced carriers can be concentrated on most of the large-n domains to reduce the local carrier density, thereby suppressing the Auger recombination. By controlling the domain distribution, we achieve blue amplified spontaneous emission and single-mode vertical-cavity surface-emitting lasing with low thresholds of 6.5 and 9.2 µJ cm-2, respectively. This work provides a guideline to design the domain distribution to realize low-threshold multicolor perovskite lasers.

18.
Angew Chem Int Ed Engl ; 62(6): e202217287, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36517417

RESUMO

As an analogue to thermally activated delayed fluorescence (TADF) of organic molecules, thermally activated delayed photoluminescence (TADPL) observed in molecule-functionalized semiconductor nanocrystals represents an exotic mechanism to harvest energy from dark molecular triplets and to obtain controllable, long-lived PL from nanocrystals. The reported TADPL systems have successfully covered the visible spectrum. However, TADF molecules already emit very efficiently in the visible, diminishing the technological impact of the less-efficient nanocrystal-molecule TADPL. Here we report bright, near-infrared TADPL in lead-free CuInSe2 nanocrystals functionalized with carboxylated tetracene ligands, which results from efficient triplet energy transfer from photoexcited nanocrystals to ligands, followed with thermally activated reverse energy transfer from ligand triplets back to nanocrystals. This strategy prolonged the nanocrystal exciton lifetime from 100 ns to 60 µs at room temperature.

19.
Angew Chem Int Ed Engl ; 62(2): e202215215, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36370037

RESUMO

Synthetic fluorescent protein chromophores have been reported for their singlet state fluorescence properties and applications in bioimaging, but rarely for the triplet state chemistries. Herein, we enabled their photo-sensitizing and photo-crosslinking properties through rational modulations. Extension of molecular conjugation and introduction of heavy atoms promoted the generation of reactive oxygen species. Unlike other photosensitizers, these chromophores selectively photo-crosslinked aggregated proteins and uncovered the interactome profiles. We also exemplified their general applications in chromophore-assisted light inactivation, photodynamic therapy and photo induced polymerization. Theoretical calculation, pathway analysis and transient absorption spectroscopy provided mechanistic insights for this triplet state chemistry. Overall, this work expands the function and application of synthetic fluorescent protein chromophores by enabling their triplet excited state properties.


Assuntos
Fotoquimioterapia , Proteínas , Fármacos Fotossensibilizantes/química , Corantes
20.
Nano Lett ; 21(10): 4137-4144, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33913710

RESUMO

Colloidal CdSe nanoplatelets (NPLs) have substantial potential in light-emitting applications because of their quantum-well-like characteristics. The self-trapped state (STS), originating from strong electron-phonon coupling (EPC), is promising in white light luminance because of its broadband emission. However, achieving STS in CdSe NPLs is extremely challenging because of their intrinsic weak EPC nature. Herein, we developed a strong STS emission in the spectral range of 450-600 nm by building superlattice (SL) structures with colloidal CdSe NPLs. We demonstrated that STS is generated via strong coupling of excitons and zone-folded longitudinal acoustic phonons with formation time of ∼450 fs and localization length of ∼0.56 nm. The Huang-Rhys factor, describing the EPC strength in SL structure, is estimated to be ∼19.9, which is much larger than that (∼0.1) of monodispersed CdSe NPLs. Our results provide an in-depth understanding of STS and a platform for generating and manipulating STS by designing SL structures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA