RESUMO
Tumor immunotherapy is booming around the world. However, strategies to activate the immune system and alleviate the immunosuppression still need to be refined. Here, we demonstrate for the first time that low-intensity pulsed ultrasound (LIPUS, spatial average time average intensity (Isata) is 200 mW/cm2, frequency is 0.3 MHz, repetition frequency is 1 kHz, and duty cycle is 20%) triggers the immune system and further reverses the immunosuppressive state in the mouse models of breast cancer by irradiating the spleen of mice. LIPUS inhibited tumor growth and extended survival in mice with 4 T-1 tumors. Further studies had previously shown that LIPUS enhanced the activation of CD4+ and CD8+ T cells in the spleen and led to significant changes in cytokines, as well as induced upregulation of mRNA levels involved in multiple immune regulatory pathways in the spleen. In addition, LIPUS promoted tumor-infiltrating lymphocyte accumulation and CD8+ T cell activation and improved the dynamics of cytokines/chemokines in the tumor microenvironment, resulting in a reversal of the immunosuppressive state of the tumor microenvironment. These results suggest a novel approach to activate the immune response by irradiating the spleen with LIPUS.
Assuntos
Neoplasias , Baço , Animais , Camundongos , Linfócitos T CD8-Positivos , Ondas Ultrassônicas , Terapia de Imunossupressão , Citocinas , ImunossupressoresRESUMO
BACKGROUND: Lung cancer is the most common cancer in the world and has become one of the malignancies with the highest incidence and mortality; more than half of patients die within one year of being diagnosed with lung cancer. In recent years, the concept of "patient-centered" service has gained popularity, and patients' subjective feelings have gradually been used in clinical decision-making. Therefore, this study determined the application of visual patient report outcomes in the field of lung cancer, in order to provide reference for specific clinical practice. METHODS: Using the Web of Science core collection as the main analysis content, Citespace and VOSviewer were used to conduct this scientometric study. RESULTS: A total of 499 literatures that met the inclusion criteria were retrieved. The most prolific institution was The University of Texas MD Anderson Cancer Center, and the United States dominates this field. CONCLUSION: The measurement of patient-reported outcomes is considered the gold standard for effectively evaluating patients' perceptions of clinical interventions or diseases. It is recommended that patient-reported outcomes be integrated into routine care for cancer patients in order to enhance communication between patients and healthcare providers. PATIENT OR PUBLIC CONTRIBUTION: Not applicable. All data in this paper are obtained from the web of science database.
Assuntos
Neoplasias Pulmonares , Medidas de Resultados Relatados pelo Paciente , Humanos , Neoplasias Pulmonares/terapia , Masculino , FemininoRESUMO
Previous studies have highlighted the toxicity of pharmaceuticals and personal care products (PPCPs) in plants, yet understanding their spatial distribution within plant tissues and specific toxic effects remains limited. This study investigates the spatial-specific toxic effects of carbamazepine (CBZ), a prevalent PPCP, in plants. Utilizing desorption electrospray ionization mass spectrometry imaging (DESI-MSI), CBZ and its transformation products were observed predominantly at the leaf edges, with 2.3-fold higher concentrations than inner regions, which was confirmed by LC-MS. Transcriptomic and metabolic analyses revealed significant differences in gene expression and metabolite levels between the inner and outer leaf regions, emphasizing the spatial location's role in CBZ response. Notably, photosynthesis-related genes were markedly downregulated, and photosynthetic efficiency was reduced at leaf edges. Additionally, elevated oxidative stress at leaf edges was indicated by higher antioxidant enzyme activity, cell membrane impairment, and increased free fatty acids. Given the increased oxidative stress at the leaf margins, the study suggests using in situ Raman spectroscopy for early detection of CBZ-induced damage by monitoring reactive oxygen species levels. These findings provide crucial insights into the spatial toxicological mechanisms of CBZ in plants, forming a basis for future spatial toxicology research of PPCPs.
Assuntos
Carbamazepina , Carbamazepina/toxicidade , Folhas de Planta/efeitos dos fármacos , Estresse Oxidativo , MultiômicaRESUMO
Establishing the structure of porphyrins with a A-π-D-π-A configuration is one of the effective strategies to maintain their dominance and compensate shortcomings through flexible changes in fragments. In this regard, π-bridges have attracted wide attention as a parameter affecting molecular backbones, electron transfer, energy levels, absorption, and other properties. However, the essence and influence of π-bridges have not yet been confirmed. In order to satisfy the requirements of intelligent application in molecular design, this study aimed to investigate the control effect of differences in π-bridge composition (thiophene and selenophene) and connection type (single bonds, ethylenic bonds and fused) on photoelectric performance. Y6 and PC61BM were used as acceptors to build donor/acceptor (D/A) interfaces and characterize the film morphology in three dimensions. Results showed that the essence of π-bridges involves a strong bridging effect (adjusting ability) between A and D fragments rather than highlighting its own nature. The large value could obtain high open circuit voltages (VOC), large separation and small recombination rates as well as stable and tight morphology. Therefore, adjusting ability is a unified descriptor for evaluating π-bridges, and it is an effective strategy to adjust material properties and morphology. This insight and discovery may provide a new evaluation descriptor for the screening and design of π-bridges.
RESUMO
Two sulfur-containing heterodimers of a cytochalasan and a macrolide, sucurchalasins A and B (1 and 2), and four known cytochalasan monomers (3-6), as well as four known macrolide derivatives (7-10), were obtained from the endophytic fungus Aspergillus spelaeus GDGJ-286. Sucurchalasins A and B (1 and 2) are the first cytochalasan heterodimers formed via a thioether bridge between cytochalasan and curvularin macrolide units. Their structures were elucidated by detailed analysis of NMR, LC-MS/MS, and X-ray crystallography. In bioassays, 1 and 2 exhibited cytotoxic effects on A2780 cells, with IC50 values of 3.9 and 8.3 µM, respectively. They also showed antibacterial activities against E. faecalis and B. subtilis with MIC values of 3.1 and 6.3 µg/mL, respectively.
Assuntos
Aspergillus , Citocalasinas , Macrolídeos , Aspergillus/química , Citocalasinas/farmacologia , Citocalasinas/química , Citocalasinas/isolamento & purificação , Macrolídeos/farmacologia , Macrolídeos/química , Estrutura Molecular , Humanos , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/química , Enxofre/química , Cristalografia por Raios X , Bacillus subtilis/efeitos dos fármacosRESUMO
DNA walkers have attracted considerable attention in biosensing and bioimaging. Compared with the conventional single leg-based DNA walker, the bipedal DNA walker has remarkable advantages, with improved sensitivity and fast kinetics, and can work efficiently in a crowded cellular environment. However, most reported bipedal DNA walkers are powered by exogenous supplementation, and elaborate DNA sequence designs, auxiliary additives or extra carriers are often needed. A highly integrated bipedal DNA walker that can address robustness, sensitivity and consistency issues in a single system is highly desirable but remains a great challenge. We herein report a novel bipedal DNA nanowalker system through simple assembly of a DNA substrate, hairpin functionalized-AuNPs (AuNPs-H2), and a blocked Mn2+-dependent DNAzyme hairpin (H1) on degradable MnO2 nanosheets, which holds great potential for living cell operation. Highly integrated features enable the simultaneous delivery of core components of the bipedal DNA walker, including a walking track (AuNPs-H2), a walking strand (H1 cleaved by APE1), and a driving force (Mn2+-dependent DNAzyme cleavage) as a whole, thereby enhancing the control of the spatiotemporal distribution of these components at the intracellular target sites. The redox reaction between the MnO2 nanosheets and GSH inside the cells not only consumed the intracellular GSH to improve the biostability of the walking track but also generated abundant Mn2+ as a cofactor of the DNAzyme. As a proof of concept, the developed nanowalker was demonstrated to work efficiently for monitoring base excision repair (BER)-related human apurinic/apyrimidinic endonuclease 1 (APE1) in living cells, highlighting the great potential of the bipedal DNA nanowalker in biological systems.
Assuntos
Reparo do DNA , DNA Catalítico , DNA , Ouro , Compostos de Manganês , Nanopartículas Metálicas , Humanos , DNA Catalítico/metabolismo , DNA Catalítico/química , Compostos de Manganês/química , Ouro/química , DNA/química , Nanopartículas Metálicas/química , Óxidos/química , Células HeLa , Nanoestruturas/química , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Técnicas Biossensoriais/métodos , Reparo por ExcisãoRESUMO
OBJECTIVES: To investigate the effects of low-intensity pulsed ultrasound (LIPUS) on the proliferation, differentiation, and tumor necrosis factor-α (TNF-α)-induced lipolysis of 3T3-L1 cells, and to explore the feasibility of regulating the release of free fatty acids (FFA) to prevent lipotoxicity. METHODS: Different intensities (30, 60, 90, and 120 mW/cm2) of LIPUS were applied to 3T3-L1 preadipocytes for different durations (5, 10, 15, 20, 25, and 30 minutes). Appropriate parameters for subsequent experiments were selected by assessing cell viability. The effect of LIPUS on the proliferation and differentiation of 3T3-L1 cells was evaluated by microscope observation, flow cytometry, and lipid content determination. After treated with LIPUS and TNF-α (50 ng/mL), the degree of lipolysis was assessed by measuring the extracellular FFA content. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the mRNA expression of relevant genes. RESULTS: Different parameters of LIPUS significantly enhance the viability of 3T3-L1 cells (P < .05), with 20 minutes and 30 mW/cm2 as the most suitable settings. After LIPUS treatment, 3T3-L1 cell proliferation accelerated, apoptosis rate and G1 phase cell proportion decreased, the content of lipid droplets and TG was increased in differentiated cells, while FFA release decreased (P < .05). The expression of PCNA, PPARγ, C/EBPα, Perilipin A mRNA increased, and the expression of TNF-α, ATGL, HSL mRNA decreased (P < .05). CONCLUSIONS: LIPUS could promote the proliferation and differentiation of 3T3-L1 cells and inhibit TNF-α-induced lipolysis, indicating its potential as a therapy for mitigating lipotoxicity caused by decompensated adipocytes.
Assuntos
Células 3T3-L1 , Diferenciação Celular , Proliferação de Células , Ácidos Graxos não Esterificados , Ondas Ultrassônicas , Animais , Camundongos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Lipólise/efeitos da radiação , Adipócitos/efeitos da radiação , Fator de Necrose Tumoral alfaRESUMO
BACKGROUND & AIMS: Capsaicin receptor, also known as transient receptor potential vanilloid 1 (TRPV1), is involved in pain physiology and neurogenic inflammation. Herein, we discovered the presence of TRPV1 in hepatic stellate cells (HSCs) and aimed to delineate its function in this cell type and liver fibrosis. METHODS: TRPV1 expression was examined in liver biopsies from patients with liver fibrosis using quantitative real-time PCR and immunostaining. Its contribution to liver fibrosis was examined in Trpv1-/- mice, upon lentiviral delivery of the TRPV1 gene, and in human and mouse primary HSCs, using patch clamp, intracellular Ca2+ mobilization determination, FACS analyses and gain/loss of function experiments. Binding of sterile alpha and Toll/interleukin-1 receptor motif-containing protein 1 (SARM1) to TRPV1 was determined using mass spectrometry, co-immunoprecipitation, surface plasmon resonance, bioluminescence resonance energy transfer, and NanoBiT. RESULTS: TRPV1 mRNA levels are significantly downregulated in patients with liver fibrosis and mouse models, showing a negative correlation with F stage and α-smooth muscle actin expression, a marker of HSC activation. TRPV1 expression and function decrease during HSC activation in fibrotic livers in vivo or during culture. Genetic and pharmacological inhibition of TRPV1 in quiescent HSCs leads to NF-κB activation and pro-inflammatory cytokine production. TRPV1 requires binding of its N-terminal ankyrin repeat domain to the TIR-His583 (Toll/interleukin-1 receptor) domain of SARM1 to prevent HSCs from pro-inflammatory activation. Trpv1-/- mice display increased HSC activation and more severe liver fibrosis, whereas TRPV1 overexpression is antifibrotic in various disease models. CONCLUSION: The antifibrotic properties of TRPV1 are attributed to the prevention of HSC activation via the recruitment of SARM1, which could be an attractive therapeutic strategy against liver fibrosis. IMPACT AND IMPLICATIONS: We identified the neuronal channel protein TRPV1 as a gatekeeper of quiescence in hepatic stellate cells, a key driver of liver fibrogenesis and chronic liver disease. Physiologically expressed in healthy liver and consistently downregulated during liver fibrosis development, its therapeutic re-expression is expected to have few side effects, making it an attractive target diagnostic tool and drug candidate for industry and clinicians.
Assuntos
Células Estreladas do Fígado , Canais de Cátion TRPV , Humanos , Camundongos , Animais , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Canais de Cátion TRPV/farmacologia , Células Estreladas do Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/patologia , Regulação da Expressão Gênica , Proteínas do Citoesqueleto/metabolismo , Proteínas do Citoesqueleto/farmacologia , Proteínas do Domínio Armadillo/genética , Proteínas do Domínio Armadillo/metabolismoRESUMO
Fruits and vegetables contain polysaccharides, polyphenols, antioxidant enzymes, and various vitamins, etc. Fruits and vegetables polysaccharides (FVPs), as an important functional factor in health food, have various biological activities such as lowering blood sugar, blood lipids, blood pressure, inhibiting tumors, and delaying aging, etc. In addition, FVPs exhibit good physicochemical properties including low toxicity, biodegradability, biocompatibility. Increasing research has confirmed that FVPs could enhance the stability and biological activities of anthocyanins, affecting their bioavailability to improve food quality. Simultaneously, the addition of FVPs in natural starch suspension could improve the physicochemical properties of natural starch such as viscosity, gelling property, water binding capacity, and lotion stability. Hence, FVPs are widely used in the modification of natural anthocyanins/starch. A systematic review of the latest research progress and future development prospects of FVPs is very necessary to better understand them. This paper systematically reviews the latest progress in the extraction, purification, structure, and analysis techniques of FVPs. Moreover, the review also introduces the potential mechanisms, evaluation methods, and applications of the interaction between polysaccharides and anthocyanins/starch. The findings can provide important references for the further in-depth development and utilization of FVPs.
RESUMO
BACKGROUND: Kojic acid (KA) is a widely used compound in the cosmetic, medical, and food industries, and is typically produced by Aspergillus oryzae. To meet increasing market demand, it is important to optimize KA production through seeking alternatives that are more economic than current A. oryzae-based methods. RESULTS: In this study, we achieved the first successful heterologous production of KA in Aspergillus niger, an industrially important fungus that does not naturally produce KA, through the expression of the kojA gene from A. oryzae. Using the resulting KA-producing A. niger strain as a platform, we identified four genes (nrkA, nrkB, nrkC, and nrkD) that negatively regulate KA production. Knocking down nrkA or deleting any of the other three genes resulted in a significant increase in KA production in shaking flask cultivation. The highest KA titer (25.71 g/L) was achieved in a pH controlled batch bioreactor using the kojA overexpression strain with a deletion of nrkC, which showed a 26.7% improvement compared to the KA titer (20.29 g/L) that was achieved in shaking flask cultivation. CONCLUSION: Our study demonstrates the potential of using A. niger as a platform for studying KA biosynthesis and regulation, and for the cost-effective production of KA in industrial strain development.
Assuntos
Aspergillus niger , Aspergillus oryzae , Aspergillus niger/genética , Aspergillus niger/metabolismo , Aspergillus oryzae/genética , Aspergillus oryzae/metabolismo , Pironas/metabolismoRESUMO
Bisphenol diglycidyl ethers (BDGEs) and Bisphenol A and its analogs (bisphenols) may have the same exposure routes and coexposure phenomenon in sensitive populations such as pregnant women. Previous biomonitoring studies on BDGEs are limited. Levels of fifteen bisphenols, six BDGEs and the DNA oxidative damage biomarker 8-hydroxy-2-deoxyguanosine (8-OHdG) were measured in the urine of pregnant women recruited in south China (n = 358). We aimed to provide the occurrence of bisphenols and BDGEs in pregnant women, and to investigate the potential relationship between their exposure and oxidative stress. Bisphenol A, bisphenol S, bisphenol F, bisphenol AP and all BDGEs (except for BADGE·2HCl) were frequently detected. The total concentrations of all bisphenols and BDGEs were 0.402-338 and 0.104-32.5 ng/mL, with geometric means of 2.87 and 2.48 ng/mL, respectively. BFDGE was the most abundant chemical of BDGEs, with a median concentration of 0.872 ng/mL, followed by BADGE·H2O·HCl (0.297 ng/mL). Except for pre-pregnancy obesity, maternal age/height, employment, fasting in the morning and parity did not affect the urinary concentrations of BDGEs. Significant and weak correlations were observed between concentrations (unadjusted) of total bisphenols and BDGEs (r = 0.389, p < 0.01), indicating their similar sources and exposure routes. The biomarker 8-OHdG was detected in all samples, with concentrations ranging from 1.98 to 32.6 ng/mL (median: 9.96 ng/mL). Levels of 8-OHdG were positively correlated with urinary several bisphenol concentrations (adjusted ß range: 0.037-0.089, p < 0.05) but were not correlated with those of BDGEs. Further studies should focus on whether BDGEs and bisphenols exert combined effects on oxidative stress. Our study provided the first BDGEs exposure data in pregnant women and indicated that BDGEs exposure was highly prevalent in pregnant women as early as 2015 in south China.
Assuntos
Compostos Benzidrílicos , Gestantes , Humanos , Feminino , Gravidez , Compostos Benzidrílicos/toxicidade , Compostos de Epóxi/toxicidade , Idade Materna , ParidadeRESUMO
Wheat sharp eyespot is a serious disease caused by the phytopathogens Rhizoctonia cerealis and R. solani. Some species in the genus Streptomyces have been identified as potential biocontrol agents against phytopathogens. In this investigation, the physiological, biochemical, phylogenetic, and genomic characteristics of strain HU2014 indicate that it is a novel Streptomyces sp. most closely related to Streptomyces albireticuli. Strain HU2014 exhibited strong antifungal activity against R. cerealis G11 and R. solani YL-3. Ultraperformance liquid chromatography-mass spectrometry on the four extracts from the extracellular filtrate of strain HU2014 identified 10 chemical constituents in the Natural Products Atlas with high match levels (more than 90%). In an antifungal efficiency test on wheat sharp eyespot, two extracts significantly reduced the lesion areas on bean leaves infected by R. solani YL-3. The drenching of wheat in pots with spore suspension of strain HU2014 demonstrated a control efficiency of 65.1% against R. cerealis G11 (compared with 66.9% when treated by a 30% hymexazol aqueous solution). Additionally, in vitro and pot experiments demonstrated that strain HU2014 can produce indoleacetic acid, siderophores, extracellular enzymes, and solubilized phosphate, and it can promote plant growth. We conclude that strain HU2014 could be a valuable microbial resource for growth promotion of wheat and biological control of wheat sharp eyespot.
Assuntos
Rhizoctonia , Streptomyces , Rhizoctonia/fisiologia , Triticum/microbiologia , Antifúngicos , Filogenia , Doenças das Plantas/microbiologia , Extratos VegetaisRESUMO
This study aimed to investigate the therapeutic effect of Leonuri Herba aqueous decoction on primary dysmenorrhea(PD) and explore the underlying mechanism in conjunction with untargeted metabolomics. Forty adult female rats were randomly divi-ded into a normal group, a model control group, ibuprofen(0.12 g·kg~(-1)) group, and high-and low-dose Leonuri Herba aqueous decoction(5 and 2.5 g·kg~(-1)) groups, with eight rats in each group. The PD rat model was prepared using intramuscular injection of estradiol benzoate combined with intraperitoneal injection of pitocin. Drugs were administered by gavage from the 4th day of modeling for 7 d. After the last administration, pitocin was injected intraperitoneally, and the writhing latency and writhing times within 30 min were recorded. The uterine and ovarian coefficients were determined. Estradiol(E_2), progesterone(Prog), oxytocin(OT), cyclooxyge-nase 2(COX-2), prostaglandin E_2(PGE_2), prostaglandin F_(2α)(PGF_(2α)), and Ca~(2+) levels in uterine tissues were measured by ELISA and biochemical kits. Morphological changes in uterine and ovarian tissues were observed by hematoxylin-eosin(HE) staining. The protein expression of oxytocin receptor(OTR), prostaglandin E_2 receptor 3(EP3), and estrogen receptor alpha(ERα) in uterine tissues was detected by immunohistochemistry. The mRNA expression of OTR, PGE_2 receptors 1-4(EP1, EP2, EP3, and EP4), and PGF_(2α) receptor(FP) in uterine tissues was detected by quantitative real-time PCR. Untargeted metabolomics analysis was performed by ultra-high-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(LC-QTOF-MS) technology to screen potential biomarkers and enrich metabolic pathways. The results showed that Leonuri Herba was able to significantly reduce the writhing times in PD rats(P<0.05 or P<0.01), significantly reduce the uterine and ovarian coefficients(P<0.01), and improve their histomorphology. After treatment with Leonuri Herba, PGE_2 content was significantly increased(P<0.05), COX-2, PGF_(2α) and Ca~(2+) content, and PGF_(2α)/PGE_2 was significantly decreased(P<0.05 or P<0.01), and OT content was decreased, while E_2 and Prog content tended to further increase in uterine tissues of PD rats. Correspondingly, OTR and EP3 protein expression was significantly downregulated(P<0.05 or P<0.01) and ERα protein expression was upregulated(P<0.05) in uterine tissues. The mRNA expression of FP and EP4 in uterine tissues was significantly downregulated(P<0.01), and the mRNA expression of EP1, EP3, and OTR showed a decreasing trend. The untargeted metabolomics results showed that 10 differential metabolites were restored in the plasma of PD rats after Leonuri Herba treatment. The results indicate that Leonuri Herba is effective in the prevention and treatment of PD, and the underlying mechanism may be attributed to the regulation of PGs synthesis and corresponding receptor binding.
Assuntos
Receptor alfa de Estrogênio , Ocitocina , Humanos , Ratos , Feminino , Animais , Dismenorreia/tratamento farmacológico , Dismenorreia/metabolismo , Ciclo-Oxigenase 2 , Dinoprostona , RNA Mensageiro/metabolismo , DinoprostaRESUMO
Citrus sinensis lateral organ boundary 1 (CsLOB1) was previously identified as a critical disease susceptibility gene for citrus bacterial canker, which is caused by Xanthomonas citri subsp. citri (Xcc). However, the molecular mechanisms of CsLOB1 in citrus response to Xcc are still elusive. Here, we constructed transgenic plants overexpressing and RNAi-silencing of CsLOB1 using the canker-disease susceptible 'wanjincheng' orange (C. sinensis Osbeck) as explants. CsLOB1-overexpressing plants exhibited dwarf phenotypes with smaller and thicker leaf, increased branches and adventitious buds clustered on stems. These phenotypes were followed by a process of pustule- and canker-like development that exhibited enhanced cell proliferation. Pectin depolymerization and expansin accumulation were enhanced by CsLOB1 overexpression, while cellulose and hemicellulose synthesis were increased by CsLOB1 silence. Whilst overexpression of CsLOB1 increased susceptibility, RNAi-silencing of CsLOB1 enhanced resistance to canker disease without impairing pathogen entry. Transcriptome analysis revealed that CsLOB1 positively regulated cell wall degradation and modification processes, cytokinin metabolism, and cell division. Additionally, 565 CsLOB1-targeted genes were identified in chromatin immunoprecipitation-sequencing (ChIP-seq) experiments. Motif discovery analysis revealed that the most highly overrepresented binding sites had a conserved 6-bp 'GCGGCG' consensus DNA motif. RNA-seq and ChIP-seq data suggested that CsLOB1 directly activates the expression of four genes involved in cell wall remodeling, and three genes that participate in cytokinin and brassinosteroid hormone pathways. Our findings indicate that CsLOB1 promotes cell proliferation by mechanisms depending on cell wall remodeling and phytohormone signaling, which may be critical to citrus canker development and bacterial growth in citrus.
Assuntos
Citrus sinensis/genética , Doenças das Plantas/imunologia , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Xanthomonas/fisiologia , Proliferação de Células , Parede Celular/metabolismo , Citrus sinensis/citologia , Citrus sinensis/imunologia , Citrus sinensis/microbiologia , Suscetibilidade a Doenças , Perfilação da Expressão Gênica , Doenças das Plantas/microbiologia , Folhas de Planta/citologia , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Transdução de Sinais , Transcriptoma , Xanthomonas/patogenicidadeRESUMO
BACKGROUND AND AIMS: Patients with liver fibrosis who have pain in the liver region may have changed nerve factors. The expression of neurokines and hepatic nerves in liver fibrosis, however, was little understood. In order to better understand how liver fibrosis develops, we plan to look into the hepatic nerve and neurokine changes and how they relate to hepatic stellate cells (HSCs). METHODS: The expression of neurokines in liver samples from 55 chronic hepatitis B patients and the carbon tetrachloride (CCl4) animal model were studied. The co-staining of Nissl and α-SMA allowed us to investigate the neurons and their interaction with α-SMA in fibrotic livers, as well as the expression of the glial cell marker glial fibrillary acidic protein (GFAP) and its relationship with α-SMA, a marker of HSCs. SH-SY5Y cells were treated with a fibrotic serum to imitate the hepatic microenvironment on neuronal cells. We also used brain-derived neurotrophic factor (BDNF) to stimulate mouse primary HSCs and LX2. RESULTS: The levels of mRNA for neurokines such as BDNF, GFAP, and growth-associated protein (GAP43) are significantly increased in both human and animal liver fibrosis. As liver fibrosis advances, we found that Nissl bodies and α-SMA may co-localize, suggesting a connection between hepatic nerves and HSCs. Human fibrotic serum may increase neurkines, notably BDNF, in SH-SY5Y cells. We also found that BDNF increased pro-inflammatory cytokines and fibrogenic markers in hHSCs. CONCLUSIONS: Patients with hepatic fibrosis had significantly higher levels of BDNF, GFAP, GAP43, and nerve fibers. HSC and nerve fibers interact, and nerves also create neurogenic substances that promote liver fibrosis and HSC activation.
Assuntos
Células Estreladas do Fígado , Neuroblastoma , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Tetracloreto de Carbono/toxicidade , Citocinas/metabolismo , Fibrose , Proteína Glial Fibrilar Ácida/metabolismo , Células Estreladas do Fígado/metabolismo , Humanos , Fígado/metabolismo , Cirrose Hepática/patologia , Camundongos , Neuroblastoma/patologia , RNA Mensageiro/metabolismo , Microambiente TumoralRESUMO
BACKGROUND: Alcoholic liver disease (ALD) is associated with high morbidity and mortality worldwide. The pathogenesis of ALD is not completely understood. Although accumulating evidence suggests an important role of glial cell line-derived neurotrophic factor (GDNF) in several diseases, there are no data concerning its role in ALD. This study compared patients with ALD with control subjects and used a mouse model and a cell culture model to investigate the function of GDNF in ALD and its mechanism of action in hepatocyte injury. METHODS: Serum levels of GDNF were measured in 25 patients with ALD and 25 healthy control subjects. A 4-week Lieber-DeCarli ethanol (EtOH) liquid diet combined with the Gao-Binge model was used in the mouse study. Mouse primary hepatocytes and Huh-7 cells were used for cell experiments. The parameters of liver injury, inflammatory cytokines, and lipid metabolism were measured. RESULTS: Patients with alcoholic hepatitis had higher serum GDNF than control subjects. Expression of GDNF mRNA and protein was markedly increased in mice in the chronic-plus-binge ALD mouse model. The level of GDNF mRNA was upregulated in primary hepatic stellate cells isolated from ethanol-fed mouse liver. Ethanol induced GDNF expression in LX2 cells. The levels of inflammatory cytokines (tumor necrosis factor α, interleukin 1ß, and monocyte chemotactic protein 1) were significantly increased after GDNF stimulation in primary hepatocytes and Huh-7 cells. After GDNF stimulation, levels of both p-AKT and p-NF-κB were significantly increased in primary hepatocytes and Huh-7 cells. The NF-κB activity induced by GDNF was significantly decreased by an NF-κB inhibitor, which limited hepatocyte injury and inflammation. CONCLUSIONS: The concentration of GDNF is increased in the circulation of ALD patients. GDNF promotes alcohol-induced liver injury and inflammation via the activation of NF-κB, which mediates hepatocyte injury and inflammatory cytokine expression. Based on these findings, GDNF is a potential therapeutic target for preventing or ameliorating liver injury in ALD.
Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Hepatopatias Alcoólicas , Animais , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Etanol/efeitos adversos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/uso terapêutico , Humanos , Inflamação/metabolismo , Fígado/metabolismo , Hepatopatias Alcoólicas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , RNA Mensageiro/metabolismoRESUMO
Giant atrial septal defect (ASD) often is associated with atrial arrhythmia, such as atrial fibrillation (AF). The recovery rate of AF is very low. Moreover, it is difficult for the intervention of a giant atrial septal defect, and it also is more difficult to perform atrial septal puncture and left atrial appendage (LAA) closure after ASD occlusion. Here, we report a case of a giant ASD and permanent AF. We find that the AF is significantly improved after atrial septal defect (ASD) occlusion and left atrial appendage (LAA) occlusion, which is manifested by spontaneous restoration and maintenance of normal sinus rhythm.
Assuntos
Fibrilação Atrial , Procedimentos Cirúrgicos Cardíacos , Ablação por Cateter , Comunicação Interatrial , Humanos , Fibrilação Atrial/complicações , Comunicação Interatrial/cirurgiaRESUMO
The development of expressway construction projects (ECPs) poses overwhelming challenges to the physical environment around the world. The challenges are supposed to be addressed with the enforcement of environmental policies (EPs). In this regard, developed countries have gained rich experience in EP formulation while developing countries are making efforts to improve policy decision-making on environmental sustainability. This study compares ECP-related EPs (EREPs) between China and the US by conducting a historical analysis with materials from 1960 to 2018 and text mining-based evaluation with materials from 2009 to 2019. The comparison results indicate that (1) an EREP framework is composed of two systems, namely outer factors and inner EPs; (2) the upper-level EPs exhibit a periodic and plan-dominating trend in China and an explanatory tendency in the US; (3) Chinese EPs are focused on pollution mitigation, whereas US EPs highlight the impacts on human health; (4) Both attach less importance to environmental protection measures at the project-level EPs. This paper provides a longitudinal comparison and analysis of EREPs in two huge countries, implying that EREPs are a snapshot of national rules and backgrounds. The findings lay a foundation for future research to examine the innovation of environmental policies, especially for those countries with massive expressway construction projects and the related environmental issues.
Assuntos
Conservação dos Recursos Naturais , Política Ambiental , China , Poluição Ambiental , HumanosRESUMO
OBJECTIVES: To study the characteristics of amino acid metabolism in preterm infants in Guangxi, China. METHODS: A retrospective analysis was performed on the medical data of 30 757 neonates who underwent the screening for inherited metabolic diseases and had negative results in Guangxi Neonatal Disease Screening Center from 2018 to 2020. Among these neonates, there were 28 611 normal full-term infants (control group) and 2 146 preterm infants (preterm birth group). According to gestational age, the preterm infants were further divided into four groups: very preterm (n=209), moderately preterm (n=307), and late preterm group (n=1 630). According to birth weight, they were divided into three groups: very low birth weight group (n=161), low birth weight group (n=1 085), and normal birth weight group (n=900). According to blood collection time, they were divided into three groups: 3-7 days group (n=1 664), 8-14 days group (n=314) and 15-28 days group (n=168). Tandem mass spectrometry was performed to measure the levels of 11 amino acids in dried blood spots, which were then compared between groups. RESULTS: After adjustment for confounding factors, there were significant differences in the levels of 11 amino acids among different gestational age groups (P<0.05), and significant differences were observed in the levels of the 11 amino acids between the control group and the various preterm groups (except for citrulline and methionine in the late preterm group). There were significant differences in the levels of 11 amino acids among different birth weight groups (P<0.05). Except for ornithine, there were significant differences in the levels of other amino acids among the different blood collection time groups (P<0.05). CONCLUSIONS: Gestational age, birth weight and blood collection time all affect amino acid metabolism in preterm infants in Guangxi, China. This provides a basis for the laboratory to establish the reference standard and clinical interpretation of blood amino acid levels in preterm infants, and to improve the nutritional metabolism of preterm infants.
Assuntos
Recém-Nascido Prematuro , Nascimento Prematuro , Aminoácidos , China , Idade Gestacional , Humanos , Lactente , Recém-Nascido , Recém-Nascido de muito Baixo Peso , Estudos RetrospectivosRESUMO
BACKGROUND: It has been reported that high expression levels of miR-197 can predict coronary artery disease (CAD). Our bioinformatics analysis showed that miR-197 may bind to long non-coding RNA (lncRNA) TONSL-AS1. This study aimed to investigate the role of TONSL-AS1 in CAD. METHODS: This study included 60 CAD patients and 60 healthy controls. Coronary angiography was performed to diagnose CAD. The interaction between TONSL-AS1 and miR-197 was predicted by IntaRNA2.0. Western-blot analysis was performed to illustrate the effect of MTONSL-AS1, miR-197 and BCL2 on human primary coronary artery endothelial cells (HCAECs). Cell migration assay was performed to explore the roles of MTONSL-AS1, miR-197 and BCL2 in regulating cell migration. Cell apoptosis assay was performed to investigate the role of MTONSL-AS1, miR-197 and BCL2 in regulating the apoptosis of HCAECs. RESULT: Significant differences in high-density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C), and gensini score were observed in patients with CAD. In addition, TONSL-AS1 was downregulated in CAD. Follow-up study revealed that low expression levels of TONSL-AS1 and high expression levels of miR-197 predicted poor survival of CAD patients. Overexpression experiments showed that TONSL-AS1 and miR-197 had no significant effect on the expression of each other. We speculated that MAFG-AS1 may sponge miR-145. Moreover, overexpression of TONSL-AS1 increased, while overexpression of miR-197 decreased the expression levels of BCL2. Furthermore, overexpression of TONSL-AS1 attenuated the effects of overexpression of miR-197 on migration and apoptosis of HCAECs. CONCLUSIONS: Therefore, the expression of TONSL-AS1 predicted the survival of CAD patients and it sponged miR-197 to inhibit the apoptosis of HCAECs.