Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(23): 10368-10377, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38814143

RESUMO

The insect Tenebrio molitor exhibits ultrafast efficiency in biodegrading polystyrene (PS). However, the generation and fate of nanoplastics (NPs) in the intestine during plastic biodegradation remain unknown. In this study, we investigated the biodegradation of PS microplastics (MPs) mediated by T. molitor larvae over a 4-week period and confirmed biodegradation by analyzing Δδ13C in the PS before and after biotreatment (-28.37‰ versus -24.88‰) as an effective tool. The ·OH radicals, primarily contributed by gut microbiota, and H2O2, primarily produced by the host, both increased after MP digestion. The size distribution of residual MP particles in excrements fluctuated within the micrometer ranges. PS NPs were detected in the intestine but not in the excrements. At the end of Weeks 1, 2, 3, and 4, the concentrations of PS NPs in gut tissues were 3.778, 2.505, 2.087, and 2.853 ng/lava, respectively, while PS NPs in glands were quantified at 0.636, 0.284, and 0.113 ng/lava and eventually fell below the detection limit. The PS NPs in glands remained below the detection limit at the end of Weeks 5 and 6. This indicates that initially, NPs generated in the gut entered glands, then declined gradually and eventually disappeared or possibly biodegraded after Week 4, associated with the elevated plastic-degrading capacities of T. molitor larvae. Our findings unveil rapid synergistic MP biodegradation by the larval host and gut microbiota, as well as the fate of generated NPs, providing new insights into the risks and fate associated with NPs during invertebrate-mediated plastic biodegradation.


Assuntos
Biodegradação Ambiental , Larva , Microplásticos , Poliestirenos , Tenebrio , Animais , Microplásticos/metabolismo , Tenebrio/metabolismo , Larva/metabolismo , Plásticos/metabolismo , Microbioma Gastrointestinal
2.
Environ Sci Technol ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38885123

RESUMO

The detrimental effects of plastics on aquatic organisms, including those of macroplastics, microplastics, and nanoplastics, have been well established. However, knowledge on the interaction between plastics and terrestrial insects is limited. To develop effective strategies for mitigating the impact of plastic pollution on terrestrial ecosystems, it is necessary to understand the toxicity effects and influencing factors of plastic ingestion by insects. An overview of current knowledge regarding plastic ingestion by terrestrial insects is provided in this Review, and the factors influencing this interaction are identified. The pathways through which insects interact with plastics, which can lead to plastic accumulation and microplastic transfer to higher trophic levels, are also discussed using an overview and a conceptual model. The diverse impacts of plastic exposure on insects are discussed, and the challenges in existing studies, such as a limited focus on certain plastic types, are identified. Further research on standardized methods for sampling and analysis is crucial for reliable research, and long-term monitoring is essential to assess plastic trends and ecological impacts in terrestrial ecosystems. The mechanisms underlying these effects need to be uncovered, and their potential long-term consequences for insect populations and ecosystems require evaluation.

3.
Environ Sci Technol ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38838251

RESUMO

Recent discoveries indicate that several insect larvae are capable of ingesting and biodegrading plastics rapidly and symbiotically, but the ecological adaptability of the larval gut microbiome to microplastics (MPs) remains unclear. Here, we described the gut microbiome assemblage and MP biodegradation of superworms (Zophobas atratus larvae) fed MPs of five major petroleum-based polymers (polyethylene, polypropylene, polystyrene, polyvinyl chloride, and polyethylene terephthalate) and antibiotics. The shift of molecular weight distribution, characteristic peaks of C═O, and metabolic intermediates of residual polymers in egested frass proved depolymerization and biodegradation of all MPs tested in the larval intestines, even under antibiotic suppression. Superworms showed a wide adaptation to the digestion of the five polymer MPs. Antibiotic suppression negatively influenced the survival rate and plastic depolymerization patterns. The larval gut microbiomes differed from those fed MPs and antibiotics, indicating that antibiotic supplementation substantially shaped the gut microbiome composition. The larval gut microbiomes fed MPs had higher network complexity and stability than those fed MPs and antibiotics, suggesting that the ecological robustness of the gut microbiomes ensured the functional adaptability of larvae to different MPs. In addition, Mantel's test indicated that the gut microbiome assemblage was obviously related to the polymer type, the plastic degradability, antibiotic stress, and larval survival rate. This finding provided novel insights into the self-adaptation of the gut microbiome of superworms in response to different MPs.

4.
Environ Sci Technol ; 58(15): 6647-6658, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38563431

RESUMO

The biodegradation of polypropylene (PP), a highly persistent nonhydrolyzable polymer, by Tenebrio molitor has been confirmed using commercial PP microplastics (MPs) (Mn 26.59 and Mw 187.12 kDa). This confirmation was based on the reduction of the PP mass, change in molecular weight (MW), and a positive Δδ13C in the residual PP. A MW-dependent biodegradation mechanism was investigated using five high-purity PP MPs, classified into low (0.83 and 6.20 kDa), medium (50.40 and 108.0 kDa), and high (575.0 kDa) MW categories to access the impact of MW on the depolymerization pattern and associated gene expression of gut bacteria and the larval host. The larvae can depolymerize/biodegrade PP polymers with high MW although the consumption rate and weight losses increased, and survival rates declined with increasing PP MW. This pattern is similar to observations with polystyrene (PS) and polyethylene (PE), i.e., both Mn and Mw decreased after being fed low MW PP, while Mn and/or Mw increased after high MW PP was fed. The gut microbiota exhibited specific bacteria associations, such as Kluyvera sp. and Pediococcus sp. for high MW PP degradation, Acinetobacter sp. for medium MW PP, and Bacillus sp. alongside three other bacteria for low MW PP metabolism. In the host transcriptome, digestive enzymes and plastic degradation-related bacterial enzymes were up-regulated after feeding on PP depending on different MWs. The T. molitor host exhibited both defensive function and degradation capability during the biodegradation of plastics, with high MW PP showing a relatively negative impact on the larvae.


Assuntos
Microbiota , Tenebrio , Animais , Tenebrio/metabolismo , Tenebrio/microbiologia , Plásticos , Polipropilenos/metabolismo , Microplásticos , Peso Molecular , Poliestirenos , Larva/metabolismo , Bactérias/metabolismo , Biodegradação Ambiental
5.
J Environ Manage ; 358: 120832, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38599089

RESUMO

Polyethylene (PE) is the most productive plastic product and includes three major polymers including high-density polyethylene (HDPE), linear low-density polyethylene (LLDPE) and low-density polyethylene (LDPE) variation in the PE depends on the branching of the polymer chain and its crystallinity. Tenebrio obscurus and Tenebrio molitor larvae biodegrade PE. We subsequently tested larval physiology, gut microbiome, oxidative stress, and PE degradation capability and degradation products under high-purity HDPE, LLDPE, and LDPE powders (<300 µm) diets for 21 days at 65 ± 5% humidity and 25 ± 0.5 °C. Our results demonstrated the specific PE consumption rates by T. molitor was 8.04-8.73 mg PE ∙ 100 larvae-1⋅day-1 and by T. obscurus was 7.68-9.31 for LDPE, LLDPE and HDPE, respectively. The larvae digested nearly 40% of the ingested three PE and showed similar survival rates and weight changes but their fat content decreased by 30-50% over 21-day period. All the PE-fed groups exhibited adverse effects, such as increased benzoquinone concentrations, intestinal tissue damage and elevated oxidative stress indicators, compared with bran-fed control. In the current study, the digestive tract or gut microbiome exhibited a high level of adaptability to PE exposure, altering the width of the gut microbial ecological niche and community diversity, revealing notable correlations between Tenebrio species and the physical and chemical properties (PCPs) of PE-MPs, with the gut microbiome and molecular weight change due to biodegradation. An ecotoxicological simulation by T.E.S.T. confirmed that PE degradation products were little ecotoxic to Daphnia magna and Rattus norvegicus providing important novel insights for future investigations into the environmentally-friendly approach of insect-mediated biodegradation of persistent plastics.


Assuntos
Biodegradação Ambiental , Larva , Microplásticos , Polietileno , Tenebrio , Animais , Tenebrio/metabolismo , Polietileno/metabolismo , Microplásticos/toxicidade , Microbioma Gastrointestinal/efeitos dos fármacos , Estresse Oxidativo
6.
Environ Sci Technol ; 57(40): 15099-15111, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37751481

RESUMO

It remains unknown whether plastic-biodegrading macroinvertebrates generate microplastics (MPs) and nanoplastics (NPs) during the biodegradation of plastics. In this study, we utilized highly sensitive particle analyzers and pyrolyzer-gas chromatography mass spectrometry (Py-GCMS) to investigate the possibility of generating MPs and NPs in frass during the biodegradation of polystyrene (PS) and low-density polyethylene (LDPE) foams by mealworms (Tenebrio molitor larvae). We also developed a digestive biofragmentation model to predict and unveil the fragmentation process of ingested plastics. The mealworms removed 77.3% of ingested PS and 71.1% of ingested PE over a 6-week test period. Biodegradation of both polymers was verified by the increase in the δ13C signature of residual plastics, changes in molecular weights, and the formation of new oxidative functional groups. MPs accumulated in the frass due to biofragmentation, with residual PS and PE exhibiting the maximum percentage by number at 2.75 and 7.27 µm, respectively. Nevertheless, NPs were not detected using a laser light scattering sizer with a detection limit of 10 nm and Py-GCMS analysis. The digestive biofragmentation model predicted that the ingested PS and PE were progressively size-reduced and rapidly biodegraded, indicating the shorter half-life the smaller plastic particles have. This study allayed concerns regarding the accumulation of NPs by plastic-degrading mealworms and provided critical insights into the factors controlling MP and NP generation during macroinvertebrate-mediated plastic biodegradation.


Assuntos
Poliestirenos , Tenebrio , Animais , Polietileno , Tenebrio/metabolismo , Plásticos , Larva/metabolismo , Biodegradação Ambiental , Microplásticos
7.
Environ Sci Technol ; 57(8): 3031-3041, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36790312

RESUMO

Tenebrio molitor and Tenebrio obscurus (Coleoptera: Tenebrionidae) larvae are two commercial insects that eat plant and crop residues as diets and also biodegrade synthetic plastics polyethylene (PE). We examined biodegradation of low-density PE (LDPE) foam (Mn = 28.9 kDa and Mw = 342.0 kDa) with and without respective co-diets, i.e., wheat brain (WB) or corn flour (CF), corn straw (CS), and rice straw (RS) at 4:1 (w/w), and their gut microbiome and genetic metabolic functional groups at 27.0 ± 0.5 °C after 28 days of incubation. The presence of co-diets enhanced LDPE consumption in both larvae and broad-depolymerized the ingested LDPE. The diet type shaped gut microbial diversity, potential pathways, and metabolic functions. The sequence of effectiveness of co-diets was WB or CF > CS > RS for larval development and LDPE degradation. Co-occurrence networks indicated that the larvae co-fed with LDPE displayed more complex correlations of gut microbiome than the larvae fed with single diets. The primary diet of WB or CF and crop residues CS and RS provided energy and nitrogen source to significantly enhance LDPE biodegradation with synergistic activities of the gut microbiota. For the larvae fed LDPE and LDPE plus co-diets, nitrogen fixation function was stimulated compared to normal diets and associated with LDPE biodegradation.


Assuntos
Besouros , Microbioma Gastrointestinal , Tenebrio , Animais , Larva/metabolismo , Tenebrio/metabolismo , Polietileno , Poliestirenos , Carbono/metabolismo , Besouros/metabolismo , Dieta
8.
J Environ Manage ; 345: 118818, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37633102

RESUMO

It is widely understood that microplastics (MPs) can induce various biological stresses in macroinvertebrates that are incapable of biodegrading plastics. However, the biodegradation and physiological responses of plastic-degrading macroinvertebrates toward MPs of different degradability levels remain unexplored. In this study, Tenebrio molitor larvae (mealworms) were selected as a model of plastics-degrading macroinvertebrate, and were tested against three common plastics of different degradability rankings: polyvinyl chloride (PVC), polystyrene (PS), and polylactic acid (PLA) MPs (size <300 µm). These three MPs were biodegraded with the rate sequence of PLA > PS > PVC, resulting in a reversed order of negative physiological responses (body weight loss, decreased survival, and biomass depletion) of mealworms. Simultaneously, the levels of reactive oxygen species (ROS), antioxidant enzyme activities, and lipid peroxidation were uniformly increased as polymer degradability decreased and intermediate toxicity increased. PVC MPs exhibited higher toxicity than the other two polymers. The oxidative stresses were effectively alleviated by supplementing co-diet bran. The T. molitor larvae fed with PLA plus bran showed sustainable growth without an increase in oxidative stress. The results provide new insights into the biotoxicity of MPs on macroinvertebrates and offer comprehensive information on the physiological stress responses of plastic-degrading macroinvertebrates during the biodegradation of plastics with different degradability levels.


Assuntos
Poliestirenos , Tenebrio , Animais , Poliestirenos/toxicidade , Larva/metabolismo , Tenebrio/metabolismo , Plásticos , Microplásticos/toxicidade , Microplásticos/metabolismo , Cloreto de Polivinila , Poliésteres/metabolismo , Antioxidantes/metabolismo
9.
Environ Sci Technol ; 56(23): 17310-17320, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36350780

RESUMO

Biodegradation of polystyrene (PS) in mealworms (Tenebrio molitor lavae) has been identified with commercial PS foams. However, there is currently limited understanding of the influence of molecular weight (MW) on insect-mediated plastic biodegradation and the corresponding responses of mealworms. In this study, we provided the results of PS biodegradation, gut microbiome, and metabolome by feeding mealworms with high-purity PS microplastics with a wide variety of MW. Over 24 days, mealworms (50 individuals) fed with 0.20 g of PS showed decreasing removal of 74.1 ± 1.7, 64.1 ± 1.6, 64.4 ± 4.0, 73.5 ± 0.9, 60.6 ± 2.6, and 39.7 ± 4.3% for PS polymers with respective weight-average molecular weights (Mw) of 6.70, 29.17, 88.63, 192.9, 612.2, and 1346 kDa. The mealworms degraded most PS polymers via broad depolymerization but ultrahigh-MW PS via limited-extent depolymerization. The gut microbiome was strongly associated with biodegradation, but that with low- and medium-MW PS was significantly distinct from that with ultrahigh-MW PS. Metabolomic analysis indicated that PS biodegradation reprogrammed the metabolome and caused intestinal dysbiosis depending on MW. Our findings demonstrate that mealworms alter their gut microbiome and intestinal metabolic pathways in response to in vivo biodegradation of PS polymers of various MWs.


Assuntos
Microbioma Gastrointestinal , Tenebrio , Humanos , Animais , Tenebrio/metabolismo , Poliestirenos , Plásticos , Microbioma Gastrointestinal/fisiologia , Peso Molecular , Polímeros , Larva/metabolismo , Metaboloma
10.
Environ Sci Technol ; 55(3): 2027-2036, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33434009

RESUMO

As the global threat of plastic pollution has grown in scale and urgency, so have efforts to find sustainable and efficient solutions. Research conducted over the past few years has identified gut environments within insect larvae, including Tenebrio molitor (yellow mealworms), as microenvironments uniquely suited to rapid plastic biodegradation. However, there is currently limited understanding of how the insect host and its gut microbiome collaborate to create an environment conducive to plastic biodegradation. In this work, we provide evidence that T. molitor secretes one or more emulsifying factor(s) (30-100 kDa) that mediate plastic bioavailability. We also demonstrate that the insect gut microbiome secretes factor(s) (<30 kDa) that enhance respiration on polystyrene (PS). We apply these insights to culture PS-fed gut microbiome enrichments, with elevated rates of respiration and degradation compared to the unenriched gut microbiome. Within the enrichment, we identified eight unique gut microorganisms associated with PS biodegradation including Citrobacter freundii, Serratia marcescens, and Klebsiella aerogenes. Our results demonstrate that both the mealworm itself and its gut microbiome contribute to accelerated plastic biodegradation. This work provides new insights into insect-mediated mechanisms of plastic degradation and potential strategies for cultivation of plastic-degrading microorganisms in future investigations and scale-up.


Assuntos
Microbioma Gastrointestinal , Tenebrio , Animais , Disponibilidade Biológica , Larva/metabolismo , Poliestirenos/metabolismo , Tenebrio/metabolismo
11.
Environ Sci Technol ; 55(9): 6012-6021, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33840192

RESUMO

Microplastics (MPs) are drawing increasing attention from the international community due to their potential threats to the ecosystem and human health. Although their occurrence and spatial distribution have been extensively studied in recent years, the relationship between their abundance and sizes remains unclear. Moreover, the underlying mechanisms dominating their size distribution have rarely been explored. In the present study, we developed a novel conditional fragmentation model to describe MP size distribution in the soil environment. It is proposed that the distribution of MPs is not a coincidence but controlled by conditional aging. The applicability of this model was tested using data collected from different land use settings in Beijing, China. A distinct downsizing phenomenon from fibers, films, and fragments to granules is observed. Undisturbed land use types accumulated larger sized MPs with higher stability, while human interference accelerated the fragmentation of MPs. Both morphological analysis and time-of-flight secondary ion mass spectroscopy (TOF-SIMS) observations provided direct evidence for the conditional fragmentation process. Furthermore, the model has proven to be suitable for describing the size distribution of MPs from various sources (including atmospheric deposition, transportation, and agriculture) and aging processes (such as mechanical abrasion, chemical oxidation, and photochemical transformation). It is proposed that this model can be used for various purposes in MP-related studies, especially source identification, transport modeling, and risk assessment.


Assuntos
Microplásticos , Poluentes Químicos da Água , Pequim , China , Ecossistema , Monitoramento Ambiental , Humanos , Plásticos , Poluentes Químicos da Água/análise
12.
Environ Sci Technol ; 54(1): 364-371, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31804807

RESUMO

As awareness of the ubiquity and magnitude of plastic pollution has increased, so has interest in the long term fate of plastics. To date, however, the fate of potentially toxic plastic additives has received comparatively little attention. In this study, we investigated the fate of the flame retardant hexabromocyclododecane (HBCD) in polystyrene (PS)-degrading mealworms and in mealworm-fed shrimp. Most of the commercial HBCD consumed by the mealworms was egested in frass within 24 h (1-log removal) with nearly a 3-log removal after 48 h. In mealworms fed PS containing high HBCD levels, only 0.27 ± 0.10%, of the ingested HBCD remained in the mealworm body tissue. This value did not increase over the course of the experiment, indicating little or no bioaccumulation. Additionally, no evidence of higher trophic level bioaccumulation or toxicity was observed when L. vannamei (Pacific whiteleg shrimp) were fed mealworm biomass grown with PS containing HBCD. Differences in shrimp survival were attributable to the fraction of mealworm biomass incorporated into the diet, not HBCD. We conclude that the environmental effects of PS ingestion need further evaluation as the generation of smaller, more contaminated particles is possible, and may contribute to toxicity at nanoscale.


Assuntos
Retardadores de Chama , Hidrocarbonetos Bromados , Tenebrio , Animais , Bioacumulação , Polímeros , Poliestirenos
13.
Environ Sci Technol ; 53(9): 5256-5265, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30990998

RESUMO

Yellow mealworms (larvae of Tenebrio molitor, Coleoptera: Tenebrionidae) have been proven to be capable of biodegrading polystyrene (PS) products. Using four geographic sources, we found that dark mealworms (larvae of Tenebrio obscurus) ate PS as well. We subsequently tested T. obscurus from Shandong, China for PS degradation capability. Our results demonstrated the ability for PS degradation within the gut of T. obscurus at greater rates than T. molitor. With expanded PS foam as the sole diet, the specific PS consumption rates for T. obscurus and T. molitor at similar sizes (2.0 cm, 62-64 mg per larva) were 32.44 ± 0.51 and 24.30 ± 1.34 mg 100 larvae-1 d-1, respectively. After 31 days, the molecular weight ( Mn) of residual PS in frass (excrement) of T. obscurus decreased by 26.03%, remarkably higher than that of T. molitor (11.67%). Fourier transform infrared spectroscopy (FTIR) indicated formation of functional groups of intermediates and chemical modification. Thermo gravimetric analysis (TGA) suggested that T. obscurus larvae degraded PS effectively based on the proportion of PS residue. Co-fed corn flour to T. obscurus and wheat bran to T. molitor increased total PS consumption by 11.6% and 15.2%, respectively. Antibiotic gentamicin almost completely inhibited PS depolymerization. High-throughput sequencing revealed significant shifts in the gut microbial community in both Tenebrio species that were associated with the PS diet and PS biodegradation, with changes in three predominant families (Enterobacteriaceae, Spiroplasmataceae, and Enterococcaceae). The results indicate that PS biodegradability may be ubiquitous within the Tenebrio genus which could provide a bioresource for plastic waste biodegradation.


Assuntos
Besouros , Tenebrio , Animais , Biodegradação Ambiental , China , Larva , Poliestirenos
14.
J Environ Sci (China) ; 85: 156-167, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31471022

RESUMO

This study evaluated uranium sequestration performance in iron-rich (30 g/kg) sediment via bioreduction followed by reoxidation. Field tests (1383 days) at Oak Ridge, Tennessee demonstrated that uranium contents in sediments increased after bioreduced sediments were re-exposed to nitrate and oxygen in contaminated groundwater. Bioreduction of contaminated sediments (1200 mg/kg U) with ethanol in microcosm reduced aqueous U from 0.37 to 0.023 mg/L. Aliquots of the bioreduced sediment were reoxidized with O2, H2O2, and NaNO3, respectively, over 285 days, resulting in aqueous U of 0.024, 1.58 and 14.4 mg/L at pH 6.30, 6.63 and 7.62, respectively. The source- and the three reoxidized sediments showed different desorption and adsorption behaviors of U, but all fit a Freundlich model. The adsorption capacities increased sharply at pH 4.5 to 5.5, plateaued at pH 5.5 to 7.0, then decreased sharply as pH increased from 7.0 to 8.0. The O2-reoxidized sediment retained a lower desorption efficiency at pH over 6.0. The NO3--reoxidized sediment exhibited higher adsorption capacity at pH 5.5 to 6.0. The pH-dependent adsorption onto Fe(III) oxides and formation of U coated particles and precipitates resulted in U sequestration, and bioreduction followed by reoxidation can enhance the U sequestration in sediment.


Assuntos
Biodegradação Ambiental , Poluentes Radioativos do Solo/metabolismo , Urânio/metabolismo , Sedimentos Geológicos/química , Poluentes Radioativos do Solo/química , Tennessee , Urânio/química
15.
Biochem Biophys Res Commun ; 499(2): 128-135, 2018 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-29501491

RESUMO

Hypertension is a multifactorial chronic inflammatory disease that leads to cardiac remodeling. A-kinase anchor protein 12 (AKAP12) is a scaffolding protein that has multiple functions in various biological events, including the regulation of vessel integrity and differentiation of neural barriers in blood. However, the role of AKAP12 in angiotensin II (Ang II)-induced cardiac injury remains unclear. In the present study, Ang II infusion reduced AKAP12 expressions in the hearts of wild-type (WT) mice, and AKAP12 knockout (KO) enhanced the infiltration of inflammatory cells. In addition, AKAP12 deletion accelerated Ang II-induced cardiac histologic alterations and dysfunction. Further, AKAP12-/- aggravated heart failure by promoting the inflammation, oxidative stress, cellular apoptosis, and autophagy induced by Ang II. Furthermore, AKAP12 KO elevated Ang II-induced cardiac fibrosis, as indicated by the following: (1) Masson trichrome staining showed that Ang II infusion markedly increased fibrotic areas of the WT mouse heart, which was greatly accelerated in AKAP12-/- mice; (2) immunohistochemistry analysis showed increased expression of transforming growth factor ß1 (TGF-ß1) and α-smooth muscle actin (α-SMA) in the AKAP12-/- mouse heart; (3) reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR) analysis showed increased expression of fibrosis-related molecules in the AKAP12-deficient mouse heart; and (4) Western blot analysis indicated significantly higher upregulation of p-SMAD2/3 in the AKAP12-/- mouse heart. In vitro, AKAP12 knockdown in HL-1 cells was responsible for TGF-ß1-induced inflammation, the generation of reactive oxygen species (ROS), apoptosis, autophagy, and fibrosis. Furthermore, overexpression of AKAP12 reduced fibrosis triggered by TGF-ß1 in cells. Overall, our study suggests that fibrosis induced by Ang II may be alleviated by AKAP12 expression through inactivation of the TGF-ß1 pathway.


Assuntos
Proteínas de Ancoragem à Quinase A/antagonistas & inibidores , Proteínas de Ciclo Celular/antagonistas & inibidores , Traumatismos Cardíacos/metabolismo , Traumatismos Cardíacos/patologia , Miocárdio/patologia , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo , Proteínas de Ancoragem à Quinase A/deficiência , Proteínas de Ancoragem à Quinase A/metabolismo , Angiotensina II , Animais , Proteínas de Ciclo Celular/deficiência , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Progressão da Doença , Fibrose , Técnicas de Silenciamento de Genes , Traumatismos Cardíacos/induzido quimicamente , Camundongos Endogâmicos C57BL , Camundongos Knockout
16.
Appl Environ Microbiol ; 84(9)2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29453264

RESUMO

A site in Oak Ridge, TN, USA, has sediments that contain >3% iron oxides and is contaminated with uranium (U). The U(VI) was bioreduced to U(IV) and immobilized in situ through intermittent injections of ethanol. It then was allowed to reoxidize via the invasion of low-pH (3.6 to 4.0), high-nitrate (up to 200 mM) groundwater back into the reduced zone for 1,383 days. To examine the biogeochemical response, high-throughput sequencing and network analysis were applied to characterize bacterial population shifts, as well as cooccurrence and coexclusion patterns among microbial communities. A paired t test indicated no significant changes of α-diversity for the bioactive wells. However, both nonmetric multidimensional scaling and analysis of similarity confirmed a significant distinction in the overall composition of the bacterial communities between the bioreduced and the reoxidized sediments. The top 20 major genera accounted for >70% of the cumulative contribution to the dissimilarity in the bacterial communities before and after the groundwater invasion. Castellaniella had the largest dissimilarity contribution (17.7%). For the bioactive wells, the abundance of the U(VI)-reducing genera Geothrix, Desulfovibrio, Ferribacterium, and Geobacter decreased significantly, whereas the denitrifying Acidovorax abundance increased significantly after groundwater invasion. Additionally, seven genera, i.e., Castellaniella, Ignavibacterium, Simplicispira, Rhizomicrobium, Acidobacteria Gp1, Acidobacteria Gp14, and Acidobacteria Gp23, were significant indicators of bioactive wells in the reoxidation stage. Canonical correspondence analysis indicated that nitrate, manganese, and pH affected mostly the U(VI)-reducing genera and indicator genera. Cooccurrence patterns among microbial taxa suggested the presence of taxa sharing similar ecological niches or mutualism/commensalism/synergism interactions.IMPORTANCE High-throughput sequencing technology in combination with a network analysis approach were used to investigate the stabilization of uranium and the corresponding dynamics of bacterial communities under field conditions with regard to the heterogeneity and complexity of the subsurface over the long term. The study also examined diversity and microbial community composition shift, the common genera, and indicator genera before and after long-term contaminated-groundwater invasion and the relationship between the target functional community structure and environmental factors. Additionally, deciphering cooccurrence and coexclusion patterns among microbial taxa and environmental parameters could help predict potential biotic interactions (cooperation/competition), shared physiologies, or habitat affinities, thus, improving our understanding of ecological niches occupied by certain specific species. These findings offer new insights into compositions of and associations among bacterial communities and serve as a foundation for future bioreduction implementation and monitoring efforts applied to uranium-contaminated sites.


Assuntos
Fenômenos Fisiológicos Bacterianos , Microbiota , Urânio/efeitos adversos , Biodegradação Ambiental , Água Subterrânea/química , Sequenciamento de Nucleotídeos em Larga Escala , Nitratos/química , Oxirredução , Tennessee
17.
Environ Sci Technol ; 52(11): 6526-6533, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29763555

RESUMO

Recent studies have demonstrated the ability for polystyrene (PS) degradation within the gut of mealworms ( Tenebrio molitor). To determine whether plastics may be broadly susceptible to biodegradation within mealworms, we evaluated the fate of polyethylene (PE) and mixtures (PE + PS). We find that PE biodegrades at comparable rates to PS. Mass balances indicate conversion of up 49.0 ± 1.4% of the ingested PE into a putative gas fraction (CO2). The molecular weights ( Mn) of egested polymer residues decreased by 40.1 ± 8.5% in PE-fed mealworms and by 12.8 ± 3.1% in PS-fed mealworms. NMR and FTIR analyses revealed chemical modifications consistent with degradation and partial oxidation of the polymer. Mixtures likewise degraded. Our results are consistent with a nonspecific degradation mechanism. Analysis of the gut microbiome by next-generation sequencing revealed two OTUs ( Citrobacter sp. and Kosakonia sp.) strongly associated with both PE and PS as well as OTUs unique to each plastic. Our results suggest that adaptability of the mealworm gut microbiome enables degradation of chemically dissimilar plastics.


Assuntos
Microbioma Gastrointestinal , Tenebrio , Animais , Larva , Plásticos , Polietileno
18.
Environ Sci Technol ; 50(2): 864-71, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26678011

RESUMO

Oxidation of ammonia to nitrite rather than nitrate is critical for nitritation process for wastewater treatment. We proposed a promising approach by using controlled ultrasonic treatment to enhance the activity of ammonia-oxidizing bacteria (AOB) and suppress that of nitrite-oxidizing bacteria (NOB). Batch activity assays indicated that when ultrasound was applied, AOB activity reached a peak level and then declined but NOB activity deteriorated continuously as the power intensity of ultrasound increased. Kinetic analysis of relative microbial activity versus ultrasonic energy density was performed to investigate the effect of operational factors (power, sludge concentration, and aeration) on AOB and NOB activities and the test parameters were selected for reactor tests. Laboratory sequential batch reactor (SBR) was further used to test the ultrasonic stimulus with 8 h per day operational cycle and synthetic waste urine as influent. With specific ultrasonic energy density of 0.09 kJ/mg VSS and continuously fed influent containing above 200 mg NH3-N/L, high AOB reproductive activity was achieved and nearly complete conversion of ammonia-N to nitrite was maintained. Microbial structure analysis confirmed that the treatment changed community of AOB, NOB, and heterotrophs. Known AOB Nitrosomonas genus remained at similar level in the biomass while typical NOB Nitrospira genus disappeared in the SBR under ultrasonic treatment and after the treatment was off for 30 days.


Assuntos
Amônia/metabolismo , Consórcios Microbianos/efeitos da radiação , Ultrassom/métodos , Purificação da Água/métodos , Bactérias , Betaproteobacteria , Biomassa , Reatores Biológicos/microbiologia , Cinética , Nitratos , Nitritos , Nitrosomonas/efeitos da radiação , Oxirredução , Esgotos , Águas Residuárias/microbiologia
19.
Lipids Health Dis ; 15(1): 210, 2016 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-27927202

RESUMO

BACKGROUND: Hepatitis virus B (HBV) has infected millions of people worldwide. Notably, such infections can be associated with hepatic complications. Levels of apolipoprotein M (apoM), a component of high-density lipoprotein (HDL), are known to be significantly elevated in patients with chronic hepatitis B (CHB). The aim of this study was to investigate the relationship between HBV DNA load in serum and serum apoM levels in patients with CHB. METHODS: A total of 73 HBeAg-negative CHB patients, 50 HBeAg-positive CHB patients, and 79 non-CHB controls were included in the study cohort. The age and body mass index (BMI) of the study participants were matched. Serum levels of apoM and the HBV antigens HBsAg and HBeAg were measured by enzyme-linked immunosorbent assay (ELISA) analysis. Serum levels of alanine aminotransferase (ALT), aspartate transaminase (AST), cholesterol, and triglycerides (TG) were assessed using an automatic biochemical analyzer. Serum HBV DNA levels were quantified by real-time PCR analysis. Data were analyzed by Spearman's rank correlation coefficient, Pearson correlation coefficient, and multivariate linear regression model (continuous variables), or Student's t-test (mean differences). RESULTS: Both the HBeAg-negative CHB and HBeAg-positive CHB patient groups exhibited elevated serum levels of apoM. Moreover, serum apoM levels were positively correlated with serum HBV DNA levels in HBeAg-negative CHB patients (r = 0.394, p < 0.001). Conversely, there was no significant relationship between apoM and HBV DNA levels in the HBeAg-positive CHB group (r = 0.197, p = 0.170). The median log copies/mL value for HBV DNA (4.00) was considered the cutoff point for the HBeAg-negative CHB group. Notably, a significant number of patients with HBV DNA levels above the cutoff point also had higher serum apoM levels (63.38 ± 29.84 vs. 41.41 ± 21.84; p = 0.001). CONCLUSIONS: Our findings reveal that the correlation between serum apoM levels and viral loads may depend on HBeAg status, as serum apoM levels were positively correlated with HBV DNA levels in HBeAg-negative CHB patients. These results suggest that HBeAg may play a role in apoM-related lipid metabolism and anti-inflammatory functions in hepatitis B patients. Thus, our findings may facilitate the clinical management of HBV infection.


Assuntos
Apolipoproteínas/sangue , Antígenos E da Hepatite B , Vírus da Hepatite B/imunologia , Hepatite B Crônica/sangue , Carga Viral , Adulto , DNA Viral/sangue , Feminino , Hepatite B Crônica/imunologia , Humanos , Masculino , Pessoa de Meia-Idade
20.
Zhongguo Dang Dai Er Ke Za Zhi ; 18(10): 937-942, 2016 Oct.
Artigo em Zh | MEDLINE | ID: mdl-27751207

RESUMO

OBJECTIVE: To study the effect of breastfeeding quality improvement on the breastfeeding rate in very low birth weight (VLBW) and extremely low birth weight (ELBW) infants in the neonatal intensive care unit (NICU). METHODS: A retrospective analysis was performed for the clinical data of VLBW and ELBW infants who were admitted from July 2014 to July 2015 (pre-improvement group) and those who were admitted from August 2015 to June 2016 after the implementation of breastfeeding quality improvement measures (post-improvement group). The parameters including condition of breastfeeding (breastfeeding rate, breastfeeding amount, and breastfeeding time), duration of parenteral nutrition, time to enteral feeding, and incidence of feeding intolerance were compared between the two groups. RESULTS: The implementation of breastfeeding quality improvement measures significantly increased breastfeeding rate and amount, significantly shortened time to addition of human milk fortifier, duration of parenteral nutrition, and time to enteral feeding, and significantly decreased the incidence of feeding intolerance. CONCLUSIONS: Breastfeeding quality improvement measures can increase breastfeeding rate in the NICU and decrease gastrointestinal complications in preterm infants.


Assuntos
Aleitamento Materno/estatística & dados numéricos , Recém-Nascido de Peso Extremamente Baixo ao Nascer , Recém-Nascido de muito Baixo Peso , Melhoria de Qualidade , Nutrição Enteral , Feminino , Humanos , Recém-Nascido de Peso Extremamente Baixo ao Nascer/crescimento & desenvolvimento , Recém-Nascido , Recém-Nascido de muito Baixo Peso/crescimento & desenvolvimento , Unidades de Terapia Intensiva Neonatal , Masculino , Nutrição Parenteral , Estudos Retrospectivos , Aumento de Peso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA