Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anticancer Drugs ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38718254

RESUMO

Acute myocardial infarction (AMI) is the high incidence rate and mortality of common cardiovascular disease. Herein, we explored the critical role of TRIM11 in AMI and its underlying mechanism. Serum from patients with AMI were collected from our hospital. Mice of model group received angiotensin II. Mice of model + TRIM11 group received with Ang II and TRIM11 vectors. Mice of sham group received normal saline. H9c2 cells were performed transfections using Lipofectamine 2000 (Thermo Fisher Scientific Inc, Shanghai, China), and treated with Ang II. TRIM11 mRNA expression was reduced, was negative correlation with collagen I/III mRNA expression, systolic blood pressure, diastolic blood pressure, left anteroposterior atrial diameter, right atrial diameter, or left ventricular ejection fraction in patient with AMI. TRIM11 mRNA and protein expression were also suppressed. METTL3 regulates TRIM11 methylation to reduce TRIM11 gene stability in model of AMI. TRIM11 gene ameliorated AMI in mice model. TRIM11 gene reduced reactive oxygen species production level of cardiomyocyte in-vitro model. TRIM11 gene reduced ferroptosis of cardiomyocyte in-vitro model. TRIM11 gene reduced ferroptosis by the inhibition of mitochondrial damage of cardiomyocyte in model of AMI. TRIM11 induced Dusp6 protein expression. Bioluminescence imaging showed that TRIM11 virus increased Dusp6 expression in heart tissue of mice model. The inhibition of Dusp6 reduced the effects of TRIM11 on ferroptosis of cardiomyocyte in model of AMI. In conclusion, this study demonstrates that TRIM11 improves AMI by regulating Dusp6 to inhibit ferroptosis of cardiomyocyte, and suggest a novel target for AMI.

2.
Chemistry ; 25(4): 1055-1063, 2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-30351501

RESUMO

Two new star-shaped and fused electron acceptors, TITT-3IC and TITT-3ICF have been designed and synthesized, which consist of a C3h -symmetric coplanar trindeno[1, 2-b: 4, 5-b': 7, 8-b'']trithiophene (TITT) as the central core and 3-(dicyanomethylidene)indan-1-one and 2-(5,6-difluoro-3-oxo-2,3-dihydro-1H-inden-1-ylidene) malononitrile as the peripheral electron-withdrawing groups, respectively. With the large coplanar configuration and electron-rich nature of π-conjugated backbone, these two acceptors exhibit strong intermolecular charge transfer absorption in the region of 500-650 nm with the optical band gaps around 1.9 eV. Relative to TITT-3IC, TITT-3ICF shows the downshifted LUMO level and the slightly redshifted absorption with the higher molar extinction coefficient due to the stronger electron-withdrawing effect of fluorination. When blending with PTB7-Th, the TITT-3ICF-based device displays a higher power conversion efficiency (PCE) of 4.26 % than the TITT-3IC-based device (PCE=3.87 %). Comparing with the TITT-3IC-based device, the increased short circuit current (JSC ) and fill factor (FF) are responsible for the higher PCE value of the TITT-3ICF-based device, which benefits from its strong and redshifted absorption for light harvesting and proper phase separation morphology for effective exciton dissociation and charge transport. This work demonstrates that as an alternative electron-donating core, TITT will be promising in designing star-shaped non-fullerene materials.

3.
Macromol Rapid Commun ; 38(18)2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28221697

RESUMO

The development of photovoltaic polymers based on C3h -symmetric benzotrithiophene (C3h -BTT), an analogue of the well-known benzodithiophene (BDT) donor unit, has been severely limited due to difficult processability. Here the authors report the preparation of solution-processable C3h -BTT-based hyperbranched conjugated polymer nanoparticles (BTT-HCPNs) with tunable particle sizes via Stille miniemulsion polymerization. Compared with the corresponding star-shaped small molecule (C3h -BTT core with three diketopyrrolopyrrole arms, BTT-3DPP) with a wide bandgap (1.83 eV), both BTT-HCPNs show strong aggregation even in dilute solutions, leading to much-extended absorption (up to ≈1000 nm) and lower bandgaps (1.38 eV). The larger BTT-HCPN particle exhibits stronger aggregation and more extended absorption than the smaller one. As a result, solar cells fabricated from BTT-HCPNs/PC71 BM solutions show a power conversion efficiency up to 1.51% after DIO additive treatment, much higher than that of BTT-3DPP (0.31%).


Assuntos
Nanopartículas/química , Polímeros/química , Energia Solar , Polimerização , Luz Solar
4.
IEEE Trans Neural Netw Learn Syst ; 34(6): 2896-2907, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34520373

RESUMO

Entropy minimization has been widely used in unsupervised domain adaptation (UDA). However, existing works reveal that the use of entropy-minimization-only may lead to collapsed trivial solutions for UDA. In this article, we try to seek possible close-to-ideal UDA solutions by focusing on some intuitive properties of the ideal domain adaptation solution. In particular, we propose to introduce diversity maximization for further regulating entropy minimization. In order to achieve the possible minimum target risk for UDA, we show that diversity maximization should be elaborately balanced with entropy minimization, the degree of which can be finely controlled with the use of deep embedded validation in an unsupervised manner. The proposed minimal-entropy diversity maximization (MEDM) can be directly implemented by stochastic gradient descent without the use of adversarial learning. Empirical evidence demonstrates that MEDM outperforms the state-of-the-art methods on four popular domain adaptation datasets.

5.
J Colloid Interface Sci ; 652(Pt B): 1405-1416, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37659309

RESUMO

It is highly desirable to explore functionalized polymer semiconductor/g-C3N4 heterojunction photocatalysts with the tight interfacial connection for promoting the photogenerated electron-hole pair separation, improving the hydrophilicity, extending the visible light response and achieving the efficient visible light-driven H2 evolution. Herein, we synthesized novel poly[9,9-bis(3-ethyl phosphate propyl)fluorene-alt-benzothiadiazole] (PPFBT) with a phosphate ester on every repeating unit by the Suzuki polymerization and then fabricated PPFBT/hydroxylated g-C3N4 (PPFBT/CN-OH) heterojunctions via a surface hydroxyl-induced assembly process. The ratio-optimized 5PPFBT/CN-OH shows the hydrogen evolution activity of 2662.4 µmol·g-1·h-1, an 11.1-time enhancement compared to CN-OH. The improved photocatalytic activity is mainly attributed to the enhanced electron-hole pair separation due to the tight interfacial connection by hydrogen bond (P=O…H-O) and N…S interactions between PPFBT and CN-OH. It is verified that abundant phosphate ester groups of PPFBT improve the hydrophilicity and form coordination bonds with platinum (P=O:Pt) as a cocatalyst to facilitate water splitting for H2 evolution. It is also confirmed that the enhanced electron-hole pair separation is mainly dependent on the excited high-energy level electron transfer from CN-OH to PPFBT. This work provides a rational molecular design strategy for constructing efficient functionalized polymer semiconductor/g-C3N4 heterojunctions for sunlight-driven H2 evolution.

6.
Chem Commun (Camb) ; 59(10): 1377-1380, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36649148

RESUMO

A simple N,S-chelated four-coordinated difluoroboron-based emitter is reported with three polymorphs, which emit high contrast green (G), yellow (Y) and red (R) light. Interestingly, the G and R-Crystals show different thermally activated delayed fluorescence (TADF) at 530 nm and 630 nm with a remarkable emission spectral shift of up to 100 nm, while the Y-Crystal exhibits room temperature phosphorescence (RTP) at around 570 nm with a high solid-state quantum yield of 77%. Single crystal analysis and theoretical calculations reveal that different molecular conformations and packing modes lead to distinct triplet exciton conversion channels.

7.
ACS Appl Mater Interfaces ; 12(27): 30652-30658, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32538076

RESUMO

Two novel red thermally activated delayed fluorescence (TADF) emitters [triazatruxene (TAT)-dibenzo[a,c]phenazine (DBPZ) and TAT-fluorine-substituted dibenzo[a,c]phenazine (FDBPZ)] were developed by incorporating TAT as the electron donor (D) and DBPZ or FDBPZ as the electron acceptor (A). Both compounds showed aggregation-induced emission behaviors and bright red emission in neat films. Benefited from the rigid and large planar conjugated structure of TAT and DBPZ, TAT-DBPZ and TAT-FDBPZ realized high photoluminescence quantum yields in solid states. Meanwhile, the large steric hindrance between TAT and DBPZ segments produced small singlet-triplet energy splitting (ΔEST), leading to short delayed fluorescence lifetimes and high reverse intersystem crossing (RISC) rate (>106 s-1) for both compounds. The solution-processable doped organic light-emitting diodes (OLEDs) based on TAT-DBPZ achieved a high external quantum efficiency (EQE) of 15.4% with a red emission peak at 604 nm, which was one of the highly efficient solution-processable red TADF OLEDs. TAT-FDBPZ-based doped devices also showed a red emission peak at 611 nm with a maximum EQE of 9.2% and low-efficiency roll-off ratios of 1.0% at 100 cd m-2 and 19% at 1000 cd m-2. Furthermore, their solution-processable nondoped devices displayed EQEs of 5.6 and 2.9% with the red-shifted emission peaks at 626 and 641 nm, respectively. These results indicate the huge potential of utilization of TAT as the donor unit to achieve highly efficient and low-efficiency roll-off solution-processable red TADF OLEDs.

8.
ACS Appl Mater Interfaces ; 11(31): 28115-28124, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31296002

RESUMO

Classical fused-ring electron acceptors (FREAs) with a linear acceptor-donor-acceptor (A-D-A) architecture continuously break records of power conversion efficiency (PCE) in nonfullerene organic solar cells. In contrast, the development of star-shaped FREAs still lags behind. Herein, a new C3h-symmetric and electron-rich core, benzotri(cyclopentadithiophene) (BTCDT) in which the central benzo[1,2-b:3,4-b':5,6-b″]trithiophene fused with three outer thiophenes via three cyclopentadienyl rings, is synthesized and used for the construction of star-shaped FREAs (BTCDT-IC and BTCDT-ICF). Owing to the strong electron-donating ability of the BTCDT unit, both acceptors exhibit the effective intramolecular charge transfer, leading to the strong absorption in the region of 500-800 nm with narrow band gaps below 1.70 eV as well as suitable highest occupied molecular orbital and lowest unoccupied molecular orbital levels. Compared with nonfluorinated BTCDT-IC, fluorinated BTCDT-ICF red-shifts the absorption peak to 688 nm and reduces the band gap to 1.62 eV, which induces a broader external quantum efficiency (EQE) response ranging from 300 to 800 nm and a higher maximum EQE of 70% while blending with a wide band gap polymer donor J61. The J61:the BTCDT-ICF blend film exhibits more suitable phase morphology compared with the J61:BTCDT-IC blend film, which is responsible for the enhanced EQE value, increased short-circuit current density (JSC), and fill factor (FF) in organic solar cell devices. As a result, the J61:BTCDT-ICF-based device yields a best PCE of 8.11% with a high JSC of 16.93 mA cm-2 and a high FF of 65.6%, demonstrating that the BTCDT-based star-shaped FREAs hold great potential for nonfullerene organic solar cells.

9.
J Environ Sci (China) ; 18(6): 1167-75, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17294960

RESUMO

Experiments on Zn2+ and Cd2+ adsorptions on vermiculite in aqueous solutions were conducted to investigate the widely observed adsorbent concentration effect on the traditionally defined adsorption isotherm in the adsorbate range 25-500 mg/L and adsorbent range 10-150 g/L. The results showed that the equilibrium ion adsorption density did not correspond to a unique equilibrium ion concentration in liquid phase. Three adsorbate/adsorbent ratios, the equilibrium adsorption density, the ratio of equilibrium adsorbate concentration in liquid phase to adsorbent concentration, and the ratio of initial adsorbate concentration to adsorbent concentration, were found to be related with unique values in the tested range. Based on the assumption that the equilibrium state of a liquid/solid adsorption system is determined by four mutually related components: adsorbate in liquid phase, adsorbate in solid phase, uncovered adsorption site and covered adsorption site, and that the equilibrium chemical potentials of these components should be equalized, a new model was presented for describing ion adsorption isotherm in liquid/solid systems. The proposed model fit well the experimental data obtained from the examined samples.


Assuntos
Silicatos de Alumínio/química , Cádmio/química , Cátions/química , Modelos Químicos , Zinco/química , Adsorção , China , Água/química
10.
Huan Jing Ke Xue ; 36(10): 3852-9, 2015 Oct.
Artigo em Zh | MEDLINE | ID: mdl-26841622

RESUMO

Four kinds of lead-zinc tolerant woody plants: Nerium oleander, Koelreuteria paniculata, Paulownia and Boehmeria were used as materials to estimate their enrichment and transferable capacity of lead (Pb) and zinc (Zn) and analyze the subcellular distribution and chemical speciation of Zn and Ph in different parts of plants, under different modifier concentrations (CK group: 100% lead-zinc slag plus a small amount of phosphate fertilizer, improved one: 85% of lead-zinc slag ± 10% peat ± 5% bacterial manure plus a small amount of phosphate fertilizer, improved two: 75% lead-zinc slag ± 20% peat ± 5% bacterial manure ± a small amount of phosphate). Results showed that: (1) The content of Pb, Zn in matrix after planting four kinds of plants was lower than before, no significant difference between improved one and improved two of Nerium oleander and Boehmeria was found, but improved two was better than improved one of Paulownia, while improved one was better than improved two of Koelreuteria paniculata; Four plants had relatively low aboveground enrichment coefficient of Pb and Zn, but had a high transfer coefficient, showed that the appropriate modifier concentration was able to improve the Pb and Zn enrichment and transfer ability of plants. (2) In subcellular distribution, most of Pb and Zn were distributed in plant cell wall components and soluble components while the distribution in cell organelles such as mitochondria, chloroplasts and nucleus component were less. Compared with CK group, two improved group made soluble components of the cell walls of Pb fixation and retention of zinc role in the enhancement. (3) As for the chemical forms of Pb and Zn in plants, the main chemical forms of Pb were hydrochloric acid, sodium chloride and ethanol extractable forms, while other chemical form contents were few, the main chemical forms of Zn were different based on plant type. Compared with CK group, the proportion of the active Pb chemical form in different plant parts decreased in two improved groups, while the proportion of strong activity chemical forms increased; two improved groups led strong activity Zn chemical form of root increased, while strong activity Zn chemical form of aboveground decreased.


Assuntos
Chumbo/análise , Plantas/química , Poluentes do Solo/análise , Solo/química , Zinco/análise , Parede Celular/química , Fertilizantes , Fosfatos , Raízes de Plantas/química , Árvores/química
11.
Huan Jing Ke Xue ; 36(10): 3839-44, 2015 Oct.
Artigo em Zh | MEDLINE | ID: mdl-26841620

RESUMO

Soil microbe plays an important role in carbon cycling, however, the effect of land use on soil microbe remain unclear. In present study, soil samples were collected from a long-term field experiment (Pantang Agroecosystem) in subtropical China (established in 1989), including paddy-rice (PR), upland-crop (UC), and paddy rice-upland crop rotation (PU) on soil bacterial (bacteria and Archaea) community structures. The effects of long-term different land uses were determined using terminal restriction fragment length polymorphism (T-RFLP) and quantitative PCR (RT-PCR) of the 16S rRNA gene. The abundance of soil microbial 16S rRNA genes ranged from 2.5 x 10(9)-1.5 x 10(10) copies x g(-1) dry soil. Compared with the PR, UP and UC led to a significant reduction in 16S rRNA genes abundance (P < 0.05). The soil microbial communities were dominated by bacteria such as Proteobacteria (76 and 90 and 327 bp; relative abundance of 47% - 53%) and Chloroflexi (65 bp; relative abundance of 10% - 12%). RDA statistical analyses demonstrated that there were significant differences in the microbial community composition in PR, UC, and PU treated soils. Soil organic carbon and total nitrogen content were the most highly statistically significant factors which positively influenced the soil microbial population. Taken together, our findings prove the long-term different land uses significantly influence the microbial diversity and community structure. The rice planting is an effective way of sustainable utilization of subtropical red soil, and it is more advantageous to the accumulation of soil organic matter, soil fertility and microbial diversity.


Assuntos
Agricultura/métodos , Archaea/isolamento & purificação , Bactérias/isolamento & purificação , Microbiologia do Solo , Archaea/classificação , Bactérias/classificação , Biodiversidade , Carbono/análise , Ciclo do Carbono , China , Nitrogênio/análise , Oryza , Polimorfismo de Fragmento de Restrição , RNA Ribossômico 16S , Solo/química
12.
Nanoscale ; 6(4): 2375-80, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24435090

RESUMO

Porous hyperbranched conjugated polymer nanoparticles with an average particle size of 20-60 nm and a specific surface area of 225 m(2) g(-1) have been prepared through Suzuki polymerization in a miniemulsion, which could be stably dispersed in common organic solvents after complete removal of surfactants. Furthermore, a simple spin-coating method for the preparation of homogeneous transparent thin films of the nanoparticle has been developed. Bright blue emission of the porous nanoparticle films could be reversibly quenched by nitroaromatics with enhanced sensitivity compared to dense films of the linear conjugated polymer analogue.


Assuntos
Fluorocarbonos/química , Membranas Artificiais , Nanopartículas/química , Emulsões/química , Porosidade
13.
Huan Jing Ke Xue ; 35(2): 585-91, 2014 Feb.
Artigo em Zh | MEDLINE | ID: mdl-24812951

RESUMO

In order to solve the problem that wetland herbaceous plants tend to die during winter in subtropics areas, selection and purification potential evaluation experiments were carried out by introducing into the constructed wetlands 16 species of woody wetland plants. Cluster analysis was performed by including the morphological characteristics, physiological characteristics, as well as nitrogen and phosphorus accumulation of the woody wetland plants. The results indicated that there were significant differences among the tested woody plants in their survival rate, height increase, root length increase and vigor, Chlorophyll content, Superoxide dismutase, Malonaldehyde, Proline, Peroxidase, biomass, average concentration and accumulation of nitrogen and phosphorus. Based on the established evaluation system, the tested plants were clustered into 3 groups. The plants in the 1st group possessing high purification potentials are Nerium oleander and Hibiscus syriacus. Those in the 2nd group possessing moderate purification potentials are Trachycarpus fortune, Llex latifolia Thunb., Gardenia jasminoides, Serissa foetida and Ilex crenatacv Convexa. And those in the 3rd group with low purification potentials are Jasminum udiflorum, Hedera helix, Ligustrum vicaryi, Ligustrum lucidum, Buxus sempervives, Murraya paniculata, Osmanthus fragrans, Mahoniafortune and Photinia serrulata.


Assuntos
Plantas/classificação , Eliminação de Resíduos Líquidos/métodos , Áreas Alagadas , Biodegradação Ambiental , Biomassa , Nitrogênio/metabolismo , Fósforo/metabolismo , Plantas/metabolismo , Estações do Ano
14.
Huan Jing Ke Xue ; 32(8): 2397-402, 2011 Aug.
Artigo em Zh | MEDLINE | ID: mdl-22619969

RESUMO

The selective culture method and PCR-DGGE technology were applied to analyze the number and the biodiversity of microorganism species in cells with plant intercropping models and without plants in different seasons in a wetland system constructed for treatment of municipal sewage. The results showed that the numbers of microorganisms were considerably larger in the cells with plant intercropping models than those without plants, while the number of microorganisms was apparently larger in summer than that in winter in all treatments. Along the three-sequenced treatment cells with plant intercropping models a "low-high-low" changing trend in the numbers of microorganisms in summer. The UPGMA cluster analysis showed that the treatments in the same season were clustered in the same branch except for a few samples in winter and the biodiversity index was consistently higher in summer than that in winter. Five different sequences (DF1-DF5) were obtained through BLAST analysis and retrieval. The closest known origin groups were located as Escherichia coli, Citrobacter sp., Proteus sp., Klebsiella oxytoca, and Burkholderia sp. respectively. The BLASTX comparison test showed that DF1 closely related to the activities of the Mycobacterium bacillus and the Bacillus amyloliquefaciens, DF2 functioned as a conservative potential ATP binding protein, DF3 related to the activities of the Bacillus cereus spore, DF4 was involved in catabolism metabolism of microorganism and DF5 played an important role in decomposition of organic matters.


Assuntos
Biodiversidade , Raízes de Plantas/microbiologia , Plantas/classificação , Eliminação de Resíduos Líquidos/métodos , Áreas Alagadas , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Cidades , Desenvolvimento Vegetal , Estações do Ano , Esgotos
15.
Huan Jing Ke Xue ; 31(8): 1789-94, 2010 Aug.
Artigo em Zh | MEDLINE | ID: mdl-21090294

RESUMO

In order to establish an evaluation system for selection of winter wetland plants possessing high wastewater purification potentials in subtropics areas, designed sewage treatment experiments were carried out by introducing into the constructed wetlands 25 species of winter wetland plants. Cluster analysis was performed by including harmful environment-resistant enzyme and substrate enzyme activities into the commonly applied plant screening and assessment indexes system. The obtained results indicated that there were significant differences among the tested winter plants in their root length and vigor, leaf malonaldehyde (MDA), biomass, average nitrogen and phosphorus concentration and uptake, and urease and phosphoric acid enzyme activities in the root areas. Based on the established evaluation system, the tested plants were clustered into 3 groups. The plants in the 1st group possessing high purification potentials are Oenanthe javanica, Brassicacapestris, Juncus effusu, Saxifragaceae, Iris pseudoacorus, Osmanthus fragrans and Iris ensata; those in the 2nd group possessing moderate purification potentials are Brassica oleracea var acephala, Calendula officinalis, Aucuba japonica, Ligustrum lucidu, Beta vulgaris, Rhododendron simsii and Ilex latifolia; and those in the 3rd group with low purification potentials are Brassica oleracea var acephala, Calistephus chinensis, Rosa chinensis, Antirrhinums, Liriope palatyphylla, Zephyranthes candida, Fatshedera lizei, Petunia hybrida, Ilex quihoui, Dianthus caryophyllus and Loropetalum chinensis.


Assuntos
Plantas/classificação , Plantas/metabolismo , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/metabolismo , Áreas Alagadas , Biodegradação Ambiental , Temperatura Baixa , Iris/metabolismo , Nitrogênio/metabolismo , Oenanthe/metabolismo , Fósforo/metabolismo , Desenvolvimento Vegetal , Saxifragaceae/metabolismo , Estações do Ano , Poluentes Químicos da Água/isolamento & purificação
16.
Huan Jing Ke Xue ; 31(3): 660-6, 2010 Mar.
Artigo em Zh | MEDLINE | ID: mdl-20358823

RESUMO

A pilot landscaping-type wetland system for wastewater treatment was constructed by introduction of 15 selected ornamental plant species (including 4 terrestrial plant species). The pilot system consists of 2 sequenced treatment units and 12 sub-units, i.e., a primary treatment unit with 4 parallel cells and a secondary treatment unit with 8 subsurface flow cells. Designed experiments were conducted in the established system to investigate the characteristics of nitrogen accumulation in different plants and the contribution of plant nitrogen uptake to total nitrogen removal of the constructed wetland system. The result shows that the direct contribution by plant uptake to the total nitrogen removal is low, ca. 1%-3% within the nitrogen concentration range 37.5-55.6 mg/L in the influent. Plant uptake does not fully reflect the important role of the plant species in the constructed wetland system for wastewater treatment as the function of the plant should include further its interaction with microorganisms and wetland fillers by enhancing microbial activities and filler adsorption capacities. The plant denitrifying effect, defined as the difference in nitrogen removal rates between units with and without plants, has been used to represent the contribution in nitrogen removal due to presence of plant in the system. The plant denitrifying effect thus includes both the plant nitrogen uptake and the interaction effect of plant with microorganisms and wetland fillers, the later being found to account for more than 80% of the total nitrogen removal in the established treatment system.


Assuntos
Desnitrificação , Plantas/metabolismo , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos , Áreas Alagadas , Biodegradação Ambiental , Desenvolvimento Vegetal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA