Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39145989

RESUMO

Water quality criteria (WQC) serve as a scientific foundation for pollutant risk assessment and control in aquatic ecosystems. The development of regionally differentiated WQC tailored to specific regional characteristics has become an emerging trend. However, the current WQC is constrained by a lack of regional species toxicity data. To address these limitations, this study proposes the biological toxicity effect ratio (BER) method, which indirectly reflects the toxicity sensitivity of the overall aquatic ecosystem through the toxicity information on a limited number of species, enabling rapid WQC prediction. Using the established WQC in China and the USA as a case study, we combined mathematical derivation and data validation to evaluate the BER method. Among various species-taxon groups of freshwater organisms, planktonic crustaceans demonstrated the highest predictive accuracy. Our analysis further revealed that species toxicity sensitivity and regional variability jointly influence the prediction accuracy. Regardless of the evaluation indexes, planktonic crustaceans emerged as the most suitable species-taxon group for the BER method. Additionally, the BER method is particularly applicable to pollutants with conserved mechanisms across species. This study systematically explores the feasibility of using the BER method and offers new insights for deriving regionally differentiated WQC.

2.
Environ Sci Technol ; 57(49): 20893-20904, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38032700

RESUMO

Ferrate (Fe(VI)) is an emerging green disinfectant and has received increasing attention nowadays. This study conducted systematic analyses of Fe(VI) disinfection on six typical bacteria in different water matrices. The results showed that Fe(VI) was more effective in inactivating Gram-negative (G-) bacteria than Gram-positive (G+) bacteria, and the disinfection performance of Fe(VI) was better in a phosphate buffer than that in a borate buffer and secondary effluent. The inactivation rate constants of G- bacteria were significantly higher than those of G+ bacteria. The cell membrane damage of G- bacteria was also more severe than that of G+ bacteria after Fe(VI) treatment. The cell wall structure, especially cell wall thickness, might account for the difference of the inactivation efficiency between G- bacteria and G+ bacteria. Moreover, it is revealed that Fe(VI) primarily reacted with proteins rather than other biological molecules (i.e., phospholipids, peptidoglycan, and lipopolysaccharide). This was further evidenced by the reduction of bacterial autofluorescence due to the destruction of bacterial proteins during Fe(VI) inactivation. Overall, this study advances the understanding of Fe(VI) disinfection mechanisms and provides valuable information for the Fe(VI) application in water disinfection.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Água , Purificação da Água/métodos , Ferro/química , Poluentes Químicos da Água/análise , Bactérias , Oxirredução
3.
Environ Sci Technol ; 56(15): 10925-10934, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35820052

RESUMO

Conventional water disinfection methods such as chlorination typically involve the generation of harmful disinfection byproducts and intensive chemical consumption. Emerging electroporation disinfection techniques using nanowire-enhanced local electric fields inactivate microbes by damaging their outer structures without byproduct formation or chemical dosing. However, this physical-based method suffers from a limited inactivation efficiency under high water flux due to an insufficient contact time. Herein, we integrate electrochlorination with nanowire-enhanced electroporation to achieve a synergistic flow-through process for efficient water disinfection targeting bacteria and viruses. Electroporation at the cathode induces sub-lethal damages on the microbial outer structures. Subsequently, electrogenerated active chlorine at the anode aggravates these electroporation-induced injuries to the level of lethal damage. This sequential flow-through disinfection system achieves complete disinfection (>6.0-log) under a very high water flux of 2.4 × 104 L/(m2 h) with an applied voltage of 2.0 V. This disinfection efficiency is 8 times faster than that of electroporation alone. Further, the specific energy consumption for the disinfection by this novel process is extremely low (8 × 10-4 kW h/m3). Our results demonstrate a promising method for rapid and energy-efficient water disinfection by coupling electroporation with electrochlorination to meet vital needs for pathogen elimination.


Assuntos
Nanofios , Purificação da Água , Cloro/química , Desinfecção , Eletroporação , Nanofios/química , Água , Purificação da Água/métodos
4.
Appl Environ Microbiol ; 85(6)2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30658983

RESUMO

A simple aspirin-inducible system has been developed and characterized in Escherichia coli by employing the Psal promoter and SalR regulation system originally from Acinetobacter baylyi ADP1. Mutagenesis at the DNA binding domain (DBD) and chemical recognition domain (CRD) of the SalR protein in A. baylyi ADP1 suggests that the effector-free form, SalRr, can compete with the effector-bound form, SalRa, binding the Psal promoter and repressing gene transcription. The induction of the Psal promoter was compared in two different gene circuit designs: a simple regulation system (SRS) and positive autoregulation (PAR). Both regulatory circuits were induced in a dose-dependent manner in the presence of 0.05 to 10 µM aspirin. Overexpression of SalR in the SRS circuit reduced both baseline leakiness and the strength of the Psal promoter. The PAR circuit forms a positive feedback loop that fine-tunes the level of SalR. A mathematical simulation based on the SalRr/SalRa competitive binding model not only fit the observed experimental results in SRS and PAR circuits but also predicted the performance of a new gene circuit design for which weak expression of SalR in the SRS circuit should significantly improve induction strength. The experimental result is in good agreement with this prediction, validating the SalRr/SalRa competitive binding model. The aspirin-inducible systems were also functional in probiotic strain E. coli Nissle 1917 and SimCells produced from E. coli MC1000 ΔminD These well-characterized and modularized aspirin-inducible gene circuits would be useful biobricks for synthetic biology.IMPORTANCE An aspirin-inducible SalR/Psal regulation system, originally from Acinetobacter baylyi ADP1, has been designed for E. coli strains. SalR is a typical LysR-type transcriptional regulator (LTTR) family protein and activates the Psal promoter in the presence of aspirin or salicylate in the range of 0.05 to 10 µM. The experimental results and mathematical simulations support the competitive binding model of the SalR/Psal regulation system in which SalRr competes with SalRa to bind the Psal promoter and affect gene transcription. The competitive binding model successfully predicted that weak SalR expression would significantly improve the inducible strength of the SalR/Psal regulation system, which is confirmed by the experimental results. This provides an important mechanism model to fine-tune transcriptional regulation of the LTTR family, which is the largest family of transcriptional regulators in the prokaryotic kingdom. In addition, the SalR/Psal regulation system was also functional in probiotic strain E. coli Nissle 1917 and minicell-derived SimCells, which would be a useful biobrick for environmental and medical applications.


Assuntos
Aspirina/metabolismo , Técnicas Biossensoriais/métodos , Escherichia coli/metabolismo , Acinetobacter/genética , Acinetobacter/metabolismo , Técnicas Biossensoriais/instrumentação , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Redes Reguladoras de Genes , Regiões Promotoras Genéticas , Salicilatos/metabolismo
5.
Environ Sci Technol ; 53(6): 3238-3249, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30768244

RESUMO

Flow-through configuration for electrochemical disinfection is considered as a promising approach to minimize the formation of toxic byproducts and energy consumption via the enhanced convective mass transport as compared with conventional flow-by one. Under this hydrodynamic condition, it is essential to ascertain the effect of sequential electro-redox processes with the cathode/anode then anode/cathode arrangements on disinfection performance. Here, carbon fiber felt (CFF) was utilized to construct two flow-through electrode systems (FESs) with sequential reduction-oxidation (cathode-anode) or oxidation-reduction (anode-cathode) processes to systematically compare their disinfection performance toward a model Escherichia coli ( E. coli) pathogen. In-situ sampling and live/dead backlight staining experiments revealed that E. coli inactivation mainly occurred on anode via an adsorption-inactivation-desorption process. In reduction-oxidation system, after the cathode-pretreatment, bulk solution pH increased significantly, leading to the negative charge of E. coli cells. Hence, E. coli cells were adsorbed and inactivated easily on the subsequent anode, finally resulting in its much better disinfection performance and energy efficiency than the oxidation-reduction system. Application of 3.0 V resulted in ∼6.5 log E. coli removal at 1500 L m-2 h-1 (50 mL min-1), suggesting that portable devices can be designed from CFF-based FES with potential application for point-of-use water disinfection.


Assuntos
Desinfecção , Água , Fibra de Carbono , Técnicas Eletroquímicas , Eletrodos , Escherichia coli , Oxirredução
6.
Appl Environ Microbiol ; 84(8)2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29427427

RESUMO

Lasers are instrumental in advanced bioimaging and Raman spectroscopy. However, they are also well known for their destructive effects on living organisms, leading to concerns about the adverse effects of laser technologies. To implement Raman spectroscopy for cell analysis and manipulation, such as Raman-activated cell sorting, it is crucial to identify nondestructive conditions for living cells. Here, we evaluated quantitatively the effect of 532-nm laser irradiation on bacterial cell fate and growth at the single-cell level. Using a purpose-built microfluidic platform, we were able to quantify the growth characteristics, i.e., specific growth rates and lag times of individual cells, as well as the survival rate of a population in conjunction with Raman spectroscopy. Representative Gram-negative and Gram-positive species show similar trends in response to a laser irradiation dose. Laser irradiation could compromise the physiological function of cells, and the degree of destruction is both dose and strain dependent, ranging from reduced cell growth to a complete loss of cell metabolic activity and finally to physical disintegration. Gram-positive bacterial cells are more susceptible than Gram-negative bacterial strains to irradiation-induced damage. By directly correlating Raman acquisition with single-cell growth characteristics, we provide evidence of nondestructive characteristics of Raman spectroscopy on individual bacterial cells. However, while strong Raman signals can be obtained without causing cell death, the variety of responses from different strains and from individual cells justifies careful evaluation of Raman acquisition conditions if cell viability is critical.IMPORTANCE In Raman spectroscopy, the use of powerful monochromatic light in laser-based systems facilitates the detection of inherently weak signals. This allows environmentally and clinically relevant microorganisms to be measured at the single-cell level. The significance of being able to perform Raman measurement is that, unlike label-based fluorescence techniques, it provides a "fingerprint" that is specific to the identity and state of any (unlabeled) sample. Thus, it has emerged as a powerful method for studying living cells under physiological and environmental conditions. However, the laser's high power also has the potential to kill bacteria, which leads to concerns. The research presented here is a quantitative evaluation that provides a generic platform and methodology to evaluate the effects of laser irradiation on individual bacterial cells. Furthermore, it illustrates this by determining the conditions required to nondestructively measure the spectra of representative bacteria from several different groups.


Assuntos
Bactérias Gram-Negativas/efeitos da radiação , Bactérias Gram-Positivas/efeitos da radiação , Lasers , Análise Espectral Raman/métodos , Bactérias Gram-Negativas/crescimento & desenvolvimento , Bactérias Gram-Negativas/fisiologia , Bactérias Gram-Positivas/crescimento & desenvolvimento , Bactérias Gram-Positivas/fisiologia , Microfluídica
7.
Water Sci Technol ; 69(12): 2492-6, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24960012

RESUMO

Cultivation of microalgae for biomass production is a promising way to dispose of wastewater and recover nutrients simultaneously. The properties of nutrient removal and biomass production in domestic wastewater of a newly isolated microalga Scenedesmus sp. ZTY1 were investigated in this study. Scenedesmus sp. ZTY1, which was isolated from a wastewater treatment plant in Beijing, grew well in both the primary and secondary effluents of a wastewater treatment plant during the 21-day cultivation, with a maximal algal density of 3.6 × 10(6) and 1.9 × 10(6) cells · mL(-1), respectively. The total phosphorus concentrations in both effluents could be efficiently removed by over 97% after the cultivation. A high removal rate (over 90%) of total nitrogen (TN) was also observed. After cultivation in primary effluent for 21 days, the lipid content of Scenedesmus sp. ZTY1 in dry weight had reached about 32.2%. The lipid and triacylglycerol (TAG) production of Scenedesmus sp. ZTY1 was increased significantly with the extension of cultivation time. The TAG production of Scenedesmus sp. ZTY1 increased from 32 mg L(-1) at 21 d to 148 mg L(-1) at 45 d in primary effluent. All the experiments were carried out in non-sterilized domestic wastewater and Scenedesmus sp. ZTY1 showed good adaptability to the domestic wastewater environment.


Assuntos
Biocombustíveis , Microalgas , Scenedesmus/metabolismo , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Reatores Biológicos , Humanos , Scenedesmus/química
8.
Environ Pollut ; 341: 122937, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37977362

RESUMO

Ferrate (Fe(VI)) is an emerging green oxidant which has great potential and prospect in water disinfection. However, the effects of water quality on Fe(VI) disinfection remain unclear. This study systematically investigated the effects of pH, organic matters and inorganic ions on Fe(VI) inactivation of Escherichia coli (E. coli). Results showed that pH was the dominant influencing factor and the inactivation efficiency as well as inactivation rate constant was negatively correlated with pH (6.8-8.4). HFeO4- was found to be the critical Fe(VI) species contributing to the inactivation. As for organic matters (0-5 mg C/L), protein and humic acid significantly accelerated the decay of Fe(VI) and had negative effects on the inactivation efficiency, while polysaccharide slightly inhibited the inactivation due to the low reactivity with Fe(VI). As for inorganic ions, bicarbonate (0-2 mM) could stabilize Fe(VI) and decreased the inactivation rate constant, while ammonium (0-1 mM) had little effect on the inactivation of E. coli. In addition, the comprehensive effects of water quality on Fe(VI) disinfection in actual reclaimed water were also evaluated. The inactivation of E. coli in secondary effluent and denitrifying effluent was found to be inhibited compared to that in phosphate buffer. Overall, this study is believed to provide valuable information on Fe(VI) disinfection for water and wastewater treatment practices.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Escherichia coli , Qualidade da Água , Ferro/química , Oxidantes/química , Purificação da Água/métodos , Oxirredução , Poluentes Químicos da Água/análise
9.
Sci Total Environ ; 915: 169822, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38185154

RESUMO

Considering the different fouling characteristics between model foulants and organic components in real reclaimed water, it is of great importance to identify the critical foulants responsible for membrane fouling. This study identified and isolated the fraction with molecular weight (MW) > 100 kDa as the critical foulant in secondary effluent by MW cut-off membrane of 100 kDa with high efficiency. This fraction accounted for 92.2% membrane fouling of raw water, including 28.7%, 29.7% and 33.8% fouling contribution by subfractions with MW between 100-300, 300-500 and > 500 kDa. Specifically, the critical fraction with MW > 100 kDa were mainly distributed in two parts: < 0.22 µm and > 0.45 µm, corresponding to 41.9% and 56.9% fouling contribution of this fraction. Furthermore, both total organic carbon (TOC) and fouling potential of fraction with MW > 100 kDa were monitored, presenting about threefold increase from September to January in next year. Membrane fouling contribution of this critical fraction in raw secondary effluent were mainly distributed in 85∼95% throughout the 5 months, demonstrating its predominant fouling propensity. Moreover, the TOC concentration of fraction with MW > 100 kDa presented distinct positive correlation with the fouling potential of raw secondary effluent (R2 = 0.947), which was promising to be a surrogate for predicting membrane fouling in practical application.

10.
Sci Total Environ ; 947: 174521, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38972414

RESUMO

Chlorination is the most widely used disinfection technology due to its simplicity and continuous disinfection ability. However, the drawbacks of disinfection by-products and chlorine-resistant bacteria have gained increasing attention. Nowadays, ferrate (Fe(VI)) is a multifunctional and environmentally friendly agent which has great potential in wastewater reclamation and reuse. This study investigated synergistic Fe(VI) and chlorine technology for reclaimed water disinfection in terms of microbial control and chlorine decay mitigation. Specifically, synergistic disinfection significantly improved the inactivation efficiency on total coliform, Escherichia coli and heterotrophic bacteria compared to sole chlorination. Synergistic disinfection also exhibited superior performance on controlling the relative abundance of chlorine-resistant bacteria and pathogenic bacteria. In addition, the decay rate of residual chlorine was relatively lower after Fe(VI) pretreatment, which was beneficial for microbial control during the reclaimed water distribution process. Technical and economic analyses revealed that synergistic Fe(VI) and chlorine disinfection was suitable and feasible. Results of this study are believed to provide useful information and alternative options on the optimization of reclaimed water disinfection.


Assuntos
Cloro , Desinfecção , Ferro , Eliminação de Resíduos Líquidos , Purificação da Água , Cloro/farmacologia , Desinfecção/métodos , Purificação da Água/métodos , Eliminação de Resíduos Líquidos/métodos , Desinfetantes/farmacologia , Águas Residuárias/microbiologia , Escherichia coli/efeitos dos fármacos , Microbiologia da Água
11.
Sci Total Environ ; 919: 170784, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38340834

RESUMO

Reclaimed water with nitrogen, phosphorus, and other contaminants may trigger algal blooms during its ecological utilization in replenishing rivers or lakes. However, the effect of reclaimed water on algal growth rates is not well understood. In this study, the growth potentials of algae in terms of Cyanophyta, Chlorophyta, and Bacillariophyta, as well as mixed algae in both regular culture medium and reclaimed water produced from treatment plants in Beijing with similar N and P concentrations, were compared to evaluate whether reclaimed water could facilitate algal growth. In addition, reclaimed water was also sterilized to verify the impact of bacteria's presence on algal growth. The results indicated that most algae grew faster in reclaimed water, among which the growth rate of Microcystis aeruginosa even increased by 5.5 fold. The growth of mixed algae in reclaimed water was not enhanced due to the strong adaptive ability of the community structure. Residual bacteria in the reclaimed water were found to be important contributors to algal growth. This work provided theoretical support for the safe and efficient utilization of reclaimed water.


Assuntos
Cianobactérias , Microcystis , Pequim , Água , Eutrofização , Fósforo/análise , China
12.
J Hazard Mater ; 465: 133450, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38198868

RESUMO

The scientific advancement of water quality criteria (WQC) stands as one of the paramount challenges in ensuring the security of aquatic ecosystem. The region-dependent species distribution and water quality characteristics would impact the toxicity of pollutant, which would further affect the derivation of WQC across regions. Presently, however, numerous countries adhere to singular WQC values. The "One-size-fits-all" WQC value for a given pollutant may lead to either "over-protection" or "under-protection" of organisms in specific region. In this study, we used cadmium(Cd) pollution in surface waters of China as a case study to shed light on this issue. This study evaluated critical water quality parameters and species distribution characteristics to modify WQC for Cd across distinct regions, thus unveiling the geographical variations in ecological risk for Cd throughout China. Notably, regional disparities in ecological risk emerged a substantial correlation with water hardness, while species-related distinctions magnified these regional variations. After considering the aforementioned factors, the variation in long-term WQC among different areas reached 84-fold, while the divergence in risk quotient extended to 280-fold. This study delineated zones of both heightened and diminished ecological susceptibility of Cd, thereby establishing a foundation for regionally differentiated management strategies.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Cádmio/análise , Ecossistema , Organismos Aquáticos , Poluentes Químicos da Água/análise , Qualidade da Água , China , Medição de Risco
13.
J Hazard Mater ; 475: 134836, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38889471

RESUMO

Urea abatement has been a prominent challenge for UPW production. This research proposed a productive strategy combining pre-chlorination and VUV/UV processes under acidic conditions to settle this problem. This study first revealed the reaction kinetics between urea and free chlorine in a large pH range from 2.5 to 9.6, where the reaction constant rate varied from 0.06 to 0.46 M-1·s-1. Substitution reaction mediated by Cl2 was the dominant process at low pH (pH<3). The differences of dominant pathways resulted in the differences in reaction products: The detected concentration of dichloramine at pH 2.5 was twice that at pH 4.5 and 6.5. Further, this study found that pre-chlorination/VUV/UV process could achieve the thorough removal of 2-mg/L urea with chlorination of less than 5 min and VUV/UV irradiation of less than 200 mJ/cm2. Chloride ions, low pH, and higher chlorine dosage were found to be the positive factors to improve urea removal efficiency in pre-chlorination/VUV/UV process. The reaction rate constants between chlorourea with·OH and·Cl were calculated to be 3.62 × 107 and 2.26 × 109 L·mol-1·s-1, respectively.·Cl,·OH and photolysis contributed 60.5 %, 22.9 % and 16.6 % in chlorourea degradation, respectively. Pre-chlorination/VUV/UV achieved a DOC removal efficiency of 78.5 %. And nitrogen in urea was converted into inorganic nitrogenous compounds. Finally, compared with direct VUV/UV/chlorine and VUV/UV/persulfate processes, this process saved more than 70 % of energy in VUV/UV unit.

14.
J Hazard Mater ; 476: 135136, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39018597

RESUMO

This study investigates the effects of chlorine dioxide (ClO2) disinfection on the community structure, regrowth potential, and metabolic product secretion of disinfection-residual bacteria (DRB) in secondary effluent (SE), denitrification filter effluent (DFE), and ultrafiltration effluent (UE). Results show that ClO2 effectively reduces bacteria in SE and UE, achieving log removal values exceeding 3 at 1 mg/L within 30 min. A salient positive correlation (R2 > 0.95) exists between changes in total fluorescence intensity and disinfection efficacy. Post-treatment, Acinetobacter abundance increased in SE, while Pseudomonas decreased in DFE and UE. At lower ClO2 concentrations, Staphylococcus, Mycobacterium, Aeromonas, and Lactobacillus increased in DFE, but decreased at higher concentrations. After storage, bacterial counts in disinfected samples exceeded those in the control group, surpassing 105 CFU/mL. Despite an initial decline, species richness and evenness partially recovered but remained lower than control levels. Culturing DRB for 72 h showed elevated extracellular polymeric substances (EPS) secretion, quantified as total organic carbon (TOC), ranging from 5 to 27 mg/L, with significantly higher EPS in the disinfection group. Parallel factor analysis with self-organizing maps (PARAFAC-SOM) effectively differentiated water sample types and EPS fluorescent substances, underscoring the potential of three-dimensional fluorescence as an indirect measure of ClO2 disinfection efficacy.


Assuntos
Bactérias , Compostos Clorados , Desinfetantes , Desinfecção , Óxidos , Purificação da Água , Compostos Clorados/farmacologia , Óxidos/farmacologia , Desinfecção/métodos , Desinfetantes/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Purificação da Água/métodos , Microbiologia da Água
15.
Bioresour Technol ; 399: 130561, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38460558

RESUMO

During the wastewater treatment and resource recovery process by attached microalgae, the chemical oxygen demand (COD) can cause biotic contamination in algal culture systems, which can be mitigated by adding an appropriate dosage of antibiotics. The transport of COD and additive antibiotic (chloramphenicol, CAP) in algal biofilms and their influence on algal physiology were studied. The results showed that COD (60 mg/L) affected key metabolic pathways, such as photosystem II and oxidative phosphorylation, improved biofilm autotrophic and heterotrophic metabolic intensities, increased nutrient demand, and promoted biomass accumulation by 55.9 %, which was the most suitable COD concentration for attached microalgae. CAP (5-10 mg/L) effectively stimulated photosynthetic pigment accumulation and nutrient utilization in pelagic microalgal cells. In conclusion, controlling the COD concentration (approximately 60 mg/L) in the medium and adding the appropriate CAP concentration (5-10 mg/L) are conducive to improving attached microalgal biomass production and resource recovery potential from wastewater.


Assuntos
Microalgas , Microalgas/metabolismo , Cloranfenicol/metabolismo , Análise da Demanda Biológica de Oxigênio , Águas Residuárias , Biofilmes , Biomassa , Nitrogênio/metabolismo
16.
Water Res ; 249: 120890, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38016222

RESUMO

Emerging electrochemical disinfection techniques provide a promising pathway to the biofouling control of reverse osmosis (RO) process. However, the comparative effectiveness and mechanism of it under flow-through conditions with low voltage remains unclear. This study investigated the effect of a flow-through electrode system (FES) with both direct current (DC) and alternating pulse current (AC) on RO biofouling control compared with chlorine disinfection. At the initial stage of biofouling development, the normalized flux of AC-FES (67% on Day 5) was saliently higher than the control group (56% on Day 5). Subsequently, the normalized fluxes of each group tended similarity in their differences until the 20th day. After mild chemical cleaning, the RO membrane in the AC-FES group reached the highest chemical cleaning efficiency of 58%, implying its foulant was more readily removable and the biofouling was more reversible. The biofouling layer in the DC-FES group was also found to be easily cleanable. Morphological analysis suggested that the thickness and compactness of the fouling layers were the major reasons for the fouling behavior difference. The abundance of 4 fouling-related abundant genera (>1%), which were Pseudomonas, Thiobacillus, Sphingopyxis, and Mycobacterium exhibited a salient correlation with the biofouling degree. The operating cost of FES was also lower than that of chlorine disinfection. In summary, AC-FES is a promising alternative to chlorine disinfection in RO biofouling control, as it caused less and easy-cleaning biofouling layer mainly due to two advantages: a) reducing the regrowth potential after disinfection of the bacteria, leading to alleviated initial fouling, (b) reshaping the microbial community to those with weaker biofilm formation capacity.


Assuntos
Incrustação Biológica , Purificação da Água , Águas Residuárias , Incrustação Biológica/prevenção & controle , Cloro , Membranas Artificiais , Osmose , Purificação da Água/métodos
17.
Huan Jing Ke Xue ; 45(6): 3186-3195, 2024 Jun 08.
Artigo em Zh | MEDLINE | ID: mdl-38897742

RESUMO

This study primarily focused on the regional disparities in both water quality criteria and ecological risks attributed to cadmium presence within the surface waters of the Yangtze River Basin. In the initial phase, the long-term water quality criteria for cadmium were recalibrated in accordance with the guidelines outlined in China's "Water Quality Criteria for Freshwater Aquatic Organisms-Cadmium," accounting for the prevalent hardness distribution within the Yangtze River Basin's surface water. Subsequently, a more refined revision was undertaken considering the specific characteristics of the species residing within the Yangtze River Basin. This undertaking led to a comprehensive interpretation of the regional variations in both the distribution of long-term water quality criteria values and the risk quotient distribution of cadmium throughout the Yangtze River Basin. The incorporation of hardness and species-specific attributes resulted in a revised range of long-term water quality criteria for cadmium across different urban locales within the Yangtze River Basin. Notably, the recalibrated values ranged from 0.08 µg·L-1 as the lowest threshold to 0.75 µg·L-1 as the upper limit, signifying a tenfold differentiation. Correspondingly, the urban average annual risk quotient associated with cadmium exposure demonstrated a variation from 0.035 to 1.12, marking a significant 32-fold discrepancy between the lowest and highest values. It is essential to highlight that regions of paramount importance, such as the confluence area connecting the upper and middle stretches of the Yangtze River Basin and the intricate Dongting Lake system, exhibited noteworthy ecological risks attributed to cadmium presence. Consequently, further in-depth investigations into these critical regions are imperative for a comprehensive understanding of the associated risks.

18.
Environ Int ; 173: 107818, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36812804

RESUMO

In regard to membrane-based technologies of wastewater reclamation, the reported key foulants were faced with dilemma that they could not be effectively separated and extracted from reclaimed water for thorough investigation. In this study, the crucial foulants were proposed as "critical minority fraction (FCM)", representing the fraction with molecular weight (MW) > 100 kDa which could be easily separated by physical filtration using MW cut-off membrane of 100 kDa with fairly high recovery ratio. FCM with low dissolved organic carbon (DOC) concentration (∼1 mg/L) accounted for less than 20% of the total DOC in reclaimed water, while contributed to more than 90% of the membrane fouling, and thus FCM could be considered as a "perfect criminal" causing membrane fouling. Furthermore, pivotal fouling mechanism was attributed to the significant attractive force between FCM and membranes, which led to severe fouling development due to the aggregation of FCM on membrane surface. Fluorescent chromophores of FCM were concentrated in regions of proteins and soluble microbial products, with proteins and polysaccharides accounted for 45.2% and 25.1% of the total DOC, specifically. FCM was further fractionated into six fractions, among which hydrophobic acids and hydrophobic neutrals were the dominant components in terms of DOC content (∼80%) as well as fouling contribution. Regarding to these pronounced properties of FCM, targeted fouling control strategies including ozonation and coagulation were applied and proved to achieve remarkable fouling control effect. High-performance size-exclusion chromatography results suggested that ozonation achieved distinct transformation of FCM into low MW fractions, while coagulation removed FCM directly, thus leading to effective fouling alleviation. Therefore, the investigation of the critical foulants was expected to help glean valuable insight into the fouling mechanism and develop targeted fouling control technologies in practical applications.


Assuntos
Ozônio , Purificação da Água , Ultrafiltração , Água , Membranas Artificiais , Purificação da Água/métodos , Matéria Orgânica Dissolvida , Ozônio/química
19.
Water Res ; 243: 120373, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37494748

RESUMO

The ozone-ultraviolet (UV)-chlorine process is a highly effective method of disinfection in water reuse system, but currently still lacks precise quantification and accurate control. It is difficult to determine the dosage of each disinfectant because of the complex interactions that occur between disinfection units and the complicated mathematical calculation required. In this study, we proposed a dosage optimization model for ozone-UV-chlorine synergistic disinfection process. The model was able to identify the cost-effective doses of the disinfectants under the constraints of microbial inactivation, decolorization, and residual chlorine retention requirements. Specifically, the simulation of microbial inactivation rates during synergistic disinfection process was accomplished through quantification of the synergistic effects between disinfection units and the introduction of enhancement coefficients. In order to solve this optimization model rapidly and automatically, a MATLAB-based software program with graphical user interface was developed. This software consisted of calibration unit, prediction unit, assessment unit, and optimization unit, and was able to simulate synergistic ozone-UV-chlorine process and identify the optimal dose of ozone, UV, and chlorine. Validation experiments revealed good agreements between the experimental data and the results calculated by the developed software. The developed software is believed to help the water reclamation plants improve disinfection efficiency and reduce the operational costs of synergistic disinfection processes.


Assuntos
Desinfetantes , Ozônio , Purificação da Água , Desinfecção/métodos , Cloro , Água , Purificação da Água/métodos , Software , Raios Ultravioleta
20.
Sci Total Environ ; 866: 161372, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36621502

RESUMO

Chlorine disinfection has become the most widely applied and indispensable technology in wastewater treatment and reuse to mitigate microbial risk and guarantee water safety. However, owing to complexities and high concentrations of contaminants in reclaimed water, rapid evaluation of chlorine disinfection efficacy is a crucial but challenging issue. Based on intensive experimental and statistical analyses, this study has established kinetic models and potential surrogates for rapid indication of the inactivation of microbial indicators and opportunistic pathogens during chlorine disinfection in different reclaimed waters. Overall, the constructed Selleck models performed very well to simulate log removal values (LRVs) of fecal coliforms, Pseudomonas aeruginosa and heterotrophic plate counts in all reclaimed water samples (R2 = 0.877-0.990). Moreover, total and Peak A fluorescence intensity as well as fluorescence integral intensities in Regions II and IV were found to have high response sensitivities during the chlorination process. Nevertheless, their effectiveness to act as potential surrogates of LRVs of microbial indicators needs to be further validated. The results from this study can provide valuable information on microbial safety surveillance of disinfection toward sustainable and long-term water reuse.


Assuntos
Desinfecção , Purificação da Água , Desinfecção/métodos , Cloro , Água , Purificação da Água/métodos , Pseudomonas aeruginosa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA