Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Water Sci Technol ; 88(8): 2081-2107, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37906460

RESUMO

Thermal desalination evaporation of high-salt wastewater has been widely used in industry because of the proposed concept of 'zero liquid discharge'. However, due to the high content of Ca2+ and Mg2+ in high-salt wastewater, the heat exchanger, as the main treatment equipment, suffers from serious scaling problems. This review presents descaling and scale inhibition technologies of high-salt wastewater. The advantages and disadvantages of various technologies are summarized and analyzed to provide theoretical support for the research of descaling and anti-scaling of heat exchangers with high-salt wastewater. In future industrial development, the synergistic application of electromagnetic water treatment technology and scale inhibitors can significantly improve the anti-scaling effect, which can reach over 95% stably. Furthermore, the addition of a physical field can also expand the application range of scale inhibitors.


Assuntos
Águas Residuárias , Purificação da Água , Temperatura Alta , Cloreto de Sódio
2.
Bioresour Technol ; 332: 125112, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33857862

RESUMO

This study proposed a novel sludge pretreatment technology by combining freezing with potassium ferrate (PF) for synergistically enhancing the methane yield from sludge anaerobic digestion. Experimental results showed that the methane production was promoted from 170.1 ± 5.6 to 223.8 ± 7.0 mL/g VSS (volatile suspended solids) when pretreated by freezing coupled with 0.05 g/g TSS (total suspended solids) PF, with 31.6% increase. Kinetic model analysis indicated that the methane production potential and hydrolysis rate of sludge after combined pretreatment were enhanced by 32.0% and 15.0%, respectively. Mechanism studies revealed that freezing coupled with PF pretreatment effectively disrupted both extracellular polymeric substances (EPS) and microbial cells in sludge, consequently resulted in violent sludge disintegration. All the microbes responsible for hydrolysis, acidification and methanogenesis were found to be enriched by co-treatment of freezing and PF. Moreover, the fecal coliform in pretreated sludge was largely inactivated after anaerobic digestion.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Anaerobiose , Reatores Biológicos , Congelamento , Compostos de Ferro , Metano , Compostos de Potássio
3.
Sci Total Environ ; 781: 146685, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-33798880

RESUMO

Anaerobic fermentation is an eco-friendly technology for waste activated sludge (WAS) treatment, during which resource recycle can be achieved. However, traditional sludge anaerobic fermentation is limited by the poor efficiency. We herein reported a novel high-efficiency technology by combining freezing with potassium ferrate (PF) for sludge pretreatment to promote hydrogen production from anaerobic fermentation. Experimental results demonstrated that freezing coupled with PF pretreatment exerted positively synergetic effect on hydrogen production. The maximal hydrogen production of 12.50 mL/g VSS (volatile suspended solids) was detected in the fermenter pretreated by freezing (-12 °C for 24 h) coupled with PF at 0.15 g/g TSS (total suspended solids), which was 1.34, 2.33, and 7.91 times of that from the individual PF, individual freezing, and control fermenters, respectively. The simulation results based on the modified Gompertz model indicated that both the hydrogen production potential and rate were promoted by freezing coupled with 0.15 g/g TSS PF pretreatment, from 2.14 to 13.52 mL/g VSS and 0.012 to 0.163 mL/g VSS/h, respectively. Thorough mechanism investigations revealed that the sludge EPS (extracellular polymeric substances) and microbial cells were both effectively damaged by combined freezing and PF pretreatment, resulting in the acceleration of sludge disintegration. Further investigations demonstrated that except for the acidogenesis, the other biochemical processes were all inhibited by freezing coupled with PF pretreatment, but the inhibitory extent for hydrogen consuming processes was more serious than that responsible for its generation. Gene sequencing analysis illuminated that both of the hydrolytic and hydrogen generating bacteria were largely enriched in the combined pretreatment fermenter. Moreover, the dewatering performances of fermented sludge were found to be notably enhanced by freezing coupled with PF pretreatment.


Assuntos
Hidrogênio , Esgotos , Anaerobiose , Ácidos Graxos Voláteis , Fermentação , Congelamento , Concentração de Íons de Hidrogênio , Compostos de Ferro , Compostos de Potássio
4.
Bioresour Technol ; 341: 125841, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34523559

RESUMO

This study explored the effect of potassium ferrate (PF) combined with ultrasound (US) pretreatment on methane generation from sludge by a series of experiments and simulations. Batch experiments showed that the pretreatment of PF coupled with US exhibited positively synergy on the methane yield. And by the pretreatment of 0.05 g/g TSS (total suspended solids) PF cooperated with US (1 W/mL, 25 kHz, 15 min), the methane yield was enhanced from 180.62 ± 3.26 to 228.83 ± 4.76 mL/g VSS (volatile suspended solids). Mechanism studies confirmed that the co-pretreatment of PF and US efficiently promoted sludge disintegration, and the biodegradability of sludge organics was obviously enhanced. Microbial community analysis showed that the functional microorganisms participating in sludge anaerobic digestion were enriched by PF cooperated with US pretreatment, with the total abundance enhanced from 12.96% in the control to 17.96% in PF + US pretreated reactor.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Anaerobiose , Reatores Biológicos , Compostos de Ferro , Metano , Compostos de Potássio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA