Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
New Phytol ; 242(6): 2604-2619, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38563391

RESUMO

Soil contamination with arsenic (As) can cause phytotoxicity and reduce crop yield. The mechanisms of As toxicity and tolerance are not fully understood. In this study, we used a forward genetics approach to isolate a rice mutant, ahs1, that exhibits hypersensitivity to both arsenate and arsenite. Through genomic resequencing and complementation tests, we identified OsLPD1 as the causal gene, which encodes a putative lipoamide dehydrogenase. OsLPD1 was expressed in the outer cell layer of roots, root meristem cells, and in the mesophyll and vascular tissues of leaves. Subcellular localization and immunoblot analysis demonstrated that OsLPD1 is localized in the stroma of plastids. In vitro assays showed that OsLPD1 exhibited lipoamide dehydrogenase (LPD) activity, which was strongly inhibited by arsenite, but not by arsenate. The ahs1 and OsLPD1 knockout mutants exhibited significantly reduced NADH/NAD+ and GSH/GSSG ratios, along with increased levels of reactive oxygen species and greater oxidative stress in the roots compared with wild-type (WT) plants under As treatment. Additionally, loss-of-function of OsLPD1 also resulted in decreased fatty acid concentrations in rice grain. Taken together, our finding reveals that OsLPD1 plays an important role for maintaining redox homeostasis, conferring tolerance to arsenic stress, and regulating fatty acid biosynthesis in rice.


Assuntos
Arsênio , Di-Hidrolipoamida Desidrogenase , Ácidos Graxos , Homeostase , Oryza , Proteínas de Plantas , Estresse Fisiológico , Adaptação Fisiológica/efeitos dos fármacos , Adaptação Fisiológica/genética , Arsênio/toxicidade , Arsenitos/toxicidade , Di-Hidrolipoamida Desidrogenase/metabolismo , Di-Hidrolipoamida Desidrogenase/genética , Ácidos Graxos/biossíntese , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Mutação/genética , Oryza/genética , Oryza/efeitos dos fármacos , Oryza/metabolismo , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Plastídeos/metabolismo , Plastídeos/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética
2.
New Phytol ; 211(2): 658-70, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26918637

RESUMO

Arsenic (As) contamination in a paddy environment can cause phytotoxicity and elevated As accumulation in rice (Oryza sativa). The mechanism of As detoxification in rice is still poorly understood. We isolated an arsenate (As(V))-sensitive mutant of rice. Genomic resequencing and complementation identified OsCLT1, encoding a CRT-like transporter, as the causal gene for the mutant phenotype. OsCLT1 is localized to the envelope membrane of plastids. The glutathione and γ-glutamylcysteine contents in roots of Osclt1 and RNA interference lines were decreased markedly compared with the wild-type (WT). The concentrations of phytochelatin PC2 in Osclt1 roots were only 32% and 12% of that in WT after As(V) and As(III) treatments, respectively. OsCLT1 mutation resulted in lower As accumulation in roots but higher As accumulation in shoots when exposed to As(V). Under As(III) treatment, Osclt1 accumulated a lower As concentration in roots but similar As concentration in shoots to WT. Further analysis showed that the reduction of As(V) to As(III) was decreased in Osclt1. Osclt1 was also hypersensitive to cadmium (Cd). These results indicate that OsCLT1 plays an important role in glutathione homeostasis, probably by mediating the export of γ-glutamylcysteine and glutathione from plastids to the cytoplasm, which in turn affects As and Cd detoxification in rice.


Assuntos
Adaptação Fisiológica , Arsênio/toxicidade , Glutationa/metabolismo , Homeostase , Proteínas de Membrana Transportadoras/metabolismo , Oryza/metabolismo , Oryza/fisiologia , Proteínas de Plantas/metabolismo , Adaptação Fisiológica/efeitos dos fármacos , Sequência de Bases , Cádmio/toxicidade , Clonagem Molecular , Dipeptídeos/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Teste de Complementação Genética , Proteínas de Membrana Transportadoras/genética , Mutação/genética , Especificidade de Órgãos/genética , Oryza/efeitos dos fármacos , Oryza/genética , Fenótipo , Filogenia , Fitoquelatinas/metabolismo , Proteínas de Plantas/genética , Transporte Proteico , Interferência de RNA , Frações Subcelulares/metabolismo
3.
Plant J ; 79(5): 810-23, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24946881

RESUMO

Although seed dormancy is an important agronomic trait, its molecular basis is poorly understood. ABSCISIC ACID INSENSITIVE 3 (ABI3) plays an essential role in the establishment of seed dormancy. Here, we show that the lack of a seed-expressed WRKY transcription factor, WRKY41, confers reduced primary seed dormancy and thermoinhibition, phenotypes resembling those for a lack of ABI3. Loss-of-function abi3-17 and wrky41 alleles also both confer reduced sensitivity to ABA during germination and early seedling growth. Absence of WRKY41 decreases ABI3 transcript abundance in maturing and imbibed seeds, whereas transgenically overexpressing WRKY41 increases ABI3 expression. Moreover, transgenic overexpression of ABI3 completely restores seed dormancy phenotypes on wrky41. ChIP-qPCR and EMSA reveal that WRKY41 binds directly to the ABI3 promoter through three adjacent W-boxes, and a transactivation assay indicates that these W-boxes are essential for ABI3 expression. Whilst RT-qPCR analysis shows that the regulation of ABI3 by WRKY41 is not through ABA and other factors known to promote ABI3 transcription during seed maturation and germination, we also show that high concentrations of ABA might promote negative feedback regulation of WRKY41 expression. Finally, analysis of the wrky41 aba2 double mutant confirms that WRKY41 and ABA collaboratively regulate ABI3 expression and seed dormancy. In summary, our results demonstrate that WRKY41 is an important regulator of ABI3 expression, and hence of seed dormancy.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Fatores de Transcrição/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Genes Reporter , Germinação , Mutação , Fenótipo , Dormência de Plantas , Folhas de Planta/genética , Folhas de Planta/fisiologia , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Plântula/genética , Plântula/fisiologia , Sementes/genética , Sementes/fisiologia , Transdução de Sinais , Nicotiana/genética , Nicotiana/fisiologia , Fatores de Transcrição/metabolismo
4.
J Zhejiang Univ Sci ; 5(10): 1199-205, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15362190

RESUMO

Novel bacterial blight (BB) resistance gene(s) for rice was (were) introduced into a cultivated japonica rice variety Oryza sativa (cv. 8411), via somatic hybridization using the wild rice Oryza meyeriana as the donor of the resistance gene(s). Twenty-nine progenies of somatically hybridized plants were obtained. Seven somatically hybridized plants and their parents were used for AFLP (amplified fragment length polymorphism) analysis using 8 primer pairs. Results confirmed that these plants were somatic hybrids containing the characteristic bands of both parents. The morphology of the regenerated rice showed characters of both O. sativa and O. meyeriana. Two somatic hybrids showed highest BB resistance and the other 8 plants showed moderate resistance. The new germplasms with highest resistance have been used in the rice breeding program for the improvement of bacterial blight resistance.


Assuntos
Células Híbridas/microbiologia , Células Híbridas/fisiologia , Imunidade Inata/genética , Oryza/genética , Oryza/microbiologia , Controle Biológico de Vetores/métodos , Doenças das Plantas/microbiologia , Melhoramento Genético , Hibridização Genética , Oryza/classificação , Oryza/imunologia , Doenças das Plantas/genética , Plantas Geneticamente Modificadas/genética , Especificidade da Espécie
5.
J Zhejiang Univ Sci B ; 10(10): 777-83, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19817003

RESUMO

Root gravitropism is one of the important factors to determine root architecture. To understand the mechanism underlying root gravitropism, we isolated a rice (Xiushui63) mutant defective in root gravitropism, designated as gls1. Vertical sections of root caps revealed that gls1 mutant displayed normal distribution of amyloplast in the columella cells compared with the wild type. The gls1 mutant was less sensitive to 2,4-dichlorophenoxyacetic acid (2,4-D) and alpha-naphthaleneacetic acid (NAA) than the wild type. Genetic analysis indicated that the phenotype of gls1 mutant was caused by a single recessive mutation, which is mapped in a 255-kb region between RM16253 and CAPS1 on the short arm of chromosome 4.


Assuntos
Genes de Plantas , Gravitropismo/genética , Oryza/crescimento & desenvolvimento , Oryza/genética , Ácido 2,4-Diclorofenoxiacético/farmacologia , Sequência de Bases , Mapeamento Cromossômico , Cromossomos de Plantas/genética , DNA de Plantas/genética , Resistência a Medicamentos/genética , Genes Recessivos , Gravitropismo/fisiologia , Ácidos Indolacéticos/farmacologia , Mutação , Ácidos Naftalenoacéticos/farmacologia , Oryza/efeitos dos fármacos , Oryza/fisiologia , Fenótipo , Reguladores de Crescimento de Plantas/farmacologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA