Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
FASEB J ; 30(2): 1002-10, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26567005

RESUMO

The anterior pituitary hormone prolactin exerts important physiologic actions in the brain. However, the mechanism by which prolactin crosses the blood-brain barrier and enters the brain is not completely understood. On the basis of high expression of the prolactin receptor in the choroid plexus, it has been hypothesized that the receptor may bind to prolactin in the blood and translocate it into the cerebrospinal fluid (CSF). This study aimed to test this hypothesis by investigating transport of (125)I-labeled prolactin ((125)I-prolactin) into the brain of female mice in the presence and absence of the prolactin receptor (PRLR(-/-)). Peripherally administered prolactin rapidly activates brain neurons, as evidenced by prolactin-induced phosphorylation of signal transducer and activator of transcription 5 (pSTAT5) in neurons within 30 min of administration. The transport of prolactin into the brain was saturable, with transport effectively blocked only by a very high dose of unlabeled ovine prolactin. Transport was regulated, as in lactating mice with chronically elevated levels of prolactin, the rate of (125)I-prolactin transport into the brain was significantly increased compared to nonlactating controls. There was no change in the rate of (125)I-prolactin transport into the brain in PRLR(-/-) mice lacking functional prolactin receptors compared to control mice, indicating transport is independent of the prolactin receptor. These data suggest that prolactin transport into the brain involves another as yet unidentified transporter molecule. Because CSF levels of (125)I-prolactin were very low, even up to 90 min after administration, the data suggest that CSF is not the major route by which blood prolactin gains access to neurons in the brain.


Assuntos
Encéfalo/metabolismo , Neurônios/metabolismo , Prolactina/metabolismo , Receptores da Prolactina/metabolismo , Animais , Feminino , Masculino , Camundongos , Camundongos Knockout , Prolactina/genética , Transporte Proteico/fisiologia , Receptores da Prolactina/genética , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/metabolismo
2.
Genet Epigenet ; 5: 51-62, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-25512707

RESUMO

The initiation of mammalian puberty is underpinned by an increase in Kisspeptin (Kiss1) signaling via its receptor (Kiss1r/GPR54) on gonadotropin-releasing hormone (GnRH) neurons. Animals and humans with loss-of-function mutations in Kiss1 or Kiss1r fail to go through puberty. The timing of puberty is dependent on environmental factors, and malleability in puberty timing suggests a mechanism that can translate environmental signals into patterns of Kiss1/Kiss1r gene expression. Epigenetics is a powerful mechanism that can control gene expression in an environment-dependent manner. We investigated whether epigenetic DNA methylation is associated with gene expression changes at puberty. We used bisulfite-PCR-pyrosequencing to define the methylation in the promoters of Kiss1 and Kiss1r before and after puberty in female rats. Both Kiss1 and Kiss1r showed highly significant puberty-specific differential promoter methylation patterns. By identifying key differentially methylated residues associated with puberty, these findings will be important for further studies investigating the control of gene expression across the pubertal transition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA