Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Clin Immunol ; 43(3): 662-669, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36600150

RESUMO

Pathogenic FOXP3 variants cause immune dysregulation polyendocrinopathy enteropathy X-linked (IPEX) syndrome, a progressive autoimmune disease resulting from disruption of the regulatory T cell (Treg) compartment. Assigning pathogenicity to novel variants in FOXP3 is challenging due to the heterogeneous phenotype and variable immunological abnormalities. The number of cells with demethylation at the Treg cell-specific demethylated region (TSDR) is an independent biomarker of IPEX. We aimed to investigate if diagnosing IPEX at presentation with isolated diabetes could allow for effective monitoring of disease progression and assess whether TSDR analysis can aid FOXP3 variant classification and predict disease course. We describe a large genetically diagnosed IPEX cohort (n = 65) and 13 individuals with other monogenic autoimmunity subtypes in whom we quantified the proportion of cells with FOXP3 TSDR demethylation, normalized to the number with CD4 demethylation (%TSDR/CD4) and compare them to 29 unaffected controls. IPEX patients presenting with isolated diabetes (50/65, 77%) often later developed enteropathy (20/50, 40%) with a median interval of 23.5 weeks. %TSDR/CD4 was a good discriminator of IPEX vs. unaffected controls (ROC-AUC 0.81, median 13.6% vs. 8.5%, p < 0.0001) with higher levels of demethylation associated with more severe disease. Patients with other monogenic autoimmunity had a similar %TSDR/CD4 to controls (median 8.7%, p = 1.0). Identifying increased %TSDR/CD4 in patients with novel FOXP3 mutations presenting with isolated diabetes facilitates diagnosis and could offer an opportunity to monitor patients and begin immune modulatory treatment before onset of severe enteropathy.


Assuntos
Diabetes Mellitus , Doenças Genéticas Ligadas ao Cromossomo X , Humanos , Linfócitos T Reguladores , Diarreia , Doenças Genéticas Ligadas ao Cromossomo X/genética , Fatores de Transcrição Forkhead/genética , Mutação
2.
Diabet Med ; 40(9): e15155, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37246834

RESUMO

AIMS: Morphological studies of pancreas samples obtained from young people with recent-onset type 1 diabetes have revealed distinct patterns of immune cell infiltration of the pancreatic islets suggestive of two age-associated type 1 diabetes endotypes that differ by inflammatory responses and rates of disease progression. The objective of this study was to investigate whether these proposed disease endotypes are associated with pathological differences in immune cell activation and cytokine secretion by applying multiplexed gene expression analysis to pancreatic tissue from recent-onset type 1 diabetes cases. METHODS: RNA was extracted from samples of fixed, paraffin-embedded pancreas tissue from type 1 diabetes cases characterised by endotype and from controls without diabetes. Expression levels of 750 genes associated with autoimmune inflammation were determined by hybridisation to a panel of capture and reporter probes and these were counted as a measure of gene expression. Normalised counts were analysed for differences in expression between 29 type 1 diabetes cases and 7 controls without diabetes, and between the two type 1 diabetes endotypes. RESULTS: Ten inflammation-associated genes, including INS, were significantly under-expressed in both endotypes and 48 genes were more highly expressed. A different set of 13 genes associated with the development, activation and migration of lymphocytes was uniquely overexpressed in the pancreas of people developing diabetes at younger age. CONCLUSIONS: The results provide evidence that histologically defined type 1 diabetes endotypes differ in their immunopathology and identify inflammatory pathways specifically involved in disease developing at a young age, essential for a better understanding of disease heterogeneity.


Assuntos
Diabetes Mellitus Tipo 1 , Ilhotas Pancreáticas , Humanos , Adolescente , Diabetes Mellitus Tipo 1/metabolismo , Pâncreas/patologia , Ilhotas Pancreáticas/metabolismo , Inflamação/metabolismo , Diferenciação Celular
3.
Diabetologia ; 65(7): 1179-1184, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35501400

RESUMO

AIMS/HYPOTHESIS: A key unanswered question in type 1 diabetes is whether beta cells initiate their own destruction or are victims of an aberrant immune response (beta cell suicide or homicide?). To investigate this, we assessed islet autoantibodies in individuals with congenital beta cell defects causing neonatal diabetes mellitus (NDM). METHODS: We measured autoantibodies to GAD (GADA), islet antigen-2 (IA-2A) and zinc transporter 8 (ZnT8A) in 242 individuals with NDM (median age diagnosed 1.8 months [IQR 0.39-2.9 months]; median age collected 4.6 months [IQR 1.8-27.6 months]; median diabetes duration 2 months [IQR 0.6-23 months]), including 75 whose NDM resulted from severe beta cell endoplasmic reticulum (ER) stress. As a control cohort we also tested samples from 69 diabetes-free individuals (median age collected 9.9 months [IQR 9.0-48.6 months]) for autoantibodies. RESULTS: We found low prevalence of islet autoantibodies in individuals with monogenic NDM; 13/242 (5.4% [95% CI 2.9, 9.0%]) had detectable GADA, IA-2A and/or ZnT8A. This was similar to the proportion in the control participants who did not have diabetes (1/69 positive [1.4%, 95% CI 0.03, 7.8%], p=0.3). Importantly, monogenic individuals with beta cell ER stress had a similar rate of GADA/IA-2A/ZnT8A positivity to non-ER stress aetiologies (2.7% [95% CI 0.3, 9.3%] vs 6.6% [95% CI 3.3, 11.5%] p=0.4). We observed no association between islet autoimmunity and genetic risk, age at testing (including 30 individuals >10 years at testing) or diabetes duration (p>0.4 for all). CONCLUSIONS/INTERPRETATION: Our data support the hypothesis that beta cell stress/dysfunction alone does not lead to the production of islet autoantibodies, even in the context of high-risk HLA types. This suggests that additional factors are required to trigger an autoimmune response towards beta cells.


Assuntos
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Autoanticorpos , Autoimunidade/genética , Biomarcadores , Pré-Escolar , Diabetes Mellitus Tipo 1/metabolismo , Glutamato Descarboxilase , Humanos , Lactente , Recém-Nascido , Células Secretoras de Insulina/metabolismo , Fatores de Risco
4.
Curr Diab Rep ; 19(12): 159, 2019 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-31820163

RESUMO

PURPOSE OF REVIEW: Hyperexpression of classical HLA class I (HLA-I) molecules in insulin-containing islets has become a widely accepted hallmark of type 1 diabetes pathology. In comparison, relatively little is known about the expression, function and role of non-classical subtypes of HLA-I. This review focuses on the current understanding of the non-classical HLA-I subtypes: HLA-E, HLA-F and HLA-G, within and outside the field of type 1 diabetes, and considers the possible impacts of these molecules on disease etiology. RECENT FINDINGS: Evidence is growing to suggest that non-classical HLA-I proteins are upregulated, both at the RNA and protein levels in the pancreas of individuals with recent-onset type 1 diabetes. Moreover, associations between non-classical HLA-I genotypes and age at onset of type 1 diabetes have been reported in some studies. As with classical HLA-I, it is likely that hyperexpression of non-classical HLA-I is driven by the release of diffusible interferons by stressed ß cells (potentially driven by viral infection) and exacerbated by release of cytokines from infiltrating immune cells. Non-classical HLA-I proteins predominantly (but not exclusively) transduce negative signals to immune cells infiltrating at the site of injury/inflammation. We propose a model in which the islet endocrine cells, through expression of non-classical HLA-I are fighting back against the infiltrating immune cells. By inhibiting the activity and function on NK, B and select T cells, the non-classical HLA-I, proteins will reduce the non-specific bystander effects of inflammation, while at the same time still allowing the targeted destruction of ß cells by specific islet-reactive CD8+ T cells.


Assuntos
Diabetes Mellitus Tipo 1/imunologia , Antígenos de Histocompatibilidade Classe I/biossíntese , Antígenos de Histocompatibilidade Classe I/imunologia , Ilhotas Pancreáticas/imunologia , Linfócitos B/imunologia , Antígenos CD8/imunologia , Diabetes Mellitus Tipo 1/fisiopatologia , Antígenos HLA-G/biossíntese , Humanos , Inflamação/imunologia , Células Secretoras de Insulina/imunologia , Ilhotas Pancreáticas/fisiopatologia , Células Matadoras Naturais/imunologia , Linfócitos T/imunologia , Regulação para Cima , Antígenos HLA-E
5.
Diabetologia ; 59(12): 2722-2726, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27591853

RESUMO

AIMS/HYPOTHESIS: This study aimed to determine the frequency of residual beta cell function in individuals with long-standing type 1 diabetes who were recruited at diagnosis, and relate this to baseline and current islet autoantibody profile. METHODS: Two hour post-meal urine C-peptide:creatinine ratio (UCPCR) and islet autoantibodies were measured in samples collected from 144 participants (median age at diagnosis: 11.7 years; 47% male), a median of 23 years (range 12-29 years) after diagnosis. UCPCR thresholds equivalent to mixed meal-stimulated serum C-peptide >0.001 nmol/l, ≥0.03 nmol/l and ≥0.2 nmol/l were used to define 'detectable', 'minimal' and 'residual/preserved') endogenous insulin secretion, respectively. Autoantibodies against GAD (GADA), islet antigen-2 (IA-2A), zinc transporter 8 (ZnT8A) and insulin (IAA) were measured by radioimmunoassay. RESULTS: Endogenous C-peptide secretion was detectable in 51 participants (35.4%), including residual secretion in seven individuals (4.9%) and minimal secretion in 14 individuals (9.7%). In the 132 samples collected more than 10 years after diagnosis, 86 participants (65.2%) had at least one islet autoantibody: 42 (31.8%) were positive for GADA, 69 (52.3%) for IA-2A and 14 of 104 tested were positive for ZnT8A (13.5%). The level of UCPCR was related to age at diagnosis (p = 0.002) and was independent of diabetes duration, and baseline or current islet autoantibody status. CONCLUSIONS/INTERPRETATION: There is evidence of ongoing autoimmunity in the majority of individuals with longstanding diabetes. Endogenous insulin secretion continues for many years after diagnosis in individuals diagnosed with autoimmune-mediated type 1 diabetes above age 5. These findings suggest that some beta cells are protected from continued autoimmune attack in longstanding type 1 diabetes.


Assuntos
Autoimunidade/fisiologia , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/metabolismo , Células Secretoras de Insulina/imunologia , Células Secretoras de Insulina/fisiologia , Adolescente , Adulto , Autoanticorpos/imunologia , Autoimunidade/imunologia , Peptídeo C/urina , Criança , Creatina/urina , Diabetes Mellitus Tipo 1/urina , Genótipo , Antígenos de Histocompatibilidade Classe II/genética , Humanos , Células Secretoras de Insulina/metabolismo , Radioimunoensaio , Adulto Jovem
6.
Diabetes ; 73(4): 565-571, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38232306

RESUMO

Autoantibodies to glutamate decarboxylase (GADA) are widely used in the prediction and classification of type 1 diabetes. GADA radiobinding assays (RBAs) using N-terminally truncated antigens offer improved specificity, but radioisotopes limit the high-throughput potential for population screening. Luciferase-based immunoprecipitation system (LIPS) assays are sensitive and specific alternatives to RBAs with the potential to improve risk stratification. The performance of assays using the Nanoluc luciferase (Nluc)-conjugated GAD65 constructs, Nluc-GAD65(96-585) and full length Nluc-GAD65(1-585), were evaluated in 434 well-characterized serum samples from patients with recent-onset type 1 diabetes and first-degree relatives. Nonradioactive, high-throughput LIPS assays are quicker and require less serum than RBAs. Of 171 relatives previously tested single autoantibody positive for autoantibodies to full-length GAD65 by RBA but had not progressed to diabetes, fewer retested positive by LIPS using either truncated (n = 72) or full-length (n = 111) antigen. The Nluc-GAD65(96-585) truncation demonstrated the highest specificity in LIPS assays overall, but in contrast to RBA, N-terminus truncations did not result in a significant increase in disease-specificity compared with the full-length antigen. This suggests that binding of nonspecific antibodies is affected by the conformational changes resulting from addition of the Nluc antigen. Nluc-GAD65(96-585) LIPS assays offer low-blood-volume, high-specificity GADA tests for screening and diagnostics.


Assuntos
Diabetes Mellitus Tipo 1 , Humanos , Glutamato Descarboxilase , Sensibilidade e Especificidade , Autoanticorpos , Luciferases/genética , Imunoprecipitação
7.
Front Immunol ; 14: 1276255, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37908349

RESUMO

Gold nanoparticles (GNPs) have been used in the development of novel therapies as a way of delivery of both stimulatory and tolerogenic peptide cargoes. Here we report that intradermal injection of GNPs loaded with the proinsulin peptide C19-A3, in patients with type 1 diabetes, results in recruitment and retention of immune cells in the skin. These include large numbers of clonally expanded T-cells sharing the same paired T-cell receptors (TCRs) with activated phenotypes, half of which, when the TCRs were re-expressed in a cell-based system, were confirmed to be specific for either GNP or proinsulin. All the identified gold-specific clones were CD8+, whilst proinsulin-specific clones were both CD8+ and CD4+. Proinsulin-specific CD8+ clones had a distinctive cytotoxic phenotype with overexpression of granulysin (GNLY) and KIR receptors. Clonally expanded antigen-specific T cells remained in situ for months to years, with a spectrum of tissue resident memory and effector memory phenotypes. As the T-cell response is divided between targeting the gold core and the antigenic cargo, this offers a route to improving resident memory T-cells formation in response to vaccines. In addition, our scRNAseq data indicate that focusing on clonally expanded skin infiltrating T-cells recruited to intradermally injected antigen is a highly efficient method to enrich and identify antigen-specific cells. This approach has the potential to be used to monitor the intradermal delivery of antigens and nanoparticles for immune modulation in humans.


Assuntos
Diabetes Mellitus Tipo 1 , Nanopartículas Metálicas , Humanos , Autoantígenos , Proinsulina/genética , Ouro , Injeções Intradérmicas , Análise da Expressão Gênica de Célula Única , Peptídeos/genética , Receptores de Antígenos de Linfócitos T/genética
8.
Mol Metab ; 64: 101565, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35944899

RESUMO

BACKGROUND: The highly complex pathogenesis of Type 1 Diabetes is driven by several immune cell types with both effector and regulatory characteristics, which ultimately ends in the destruction of the insulin-producing beta cells. There are multiple layers of interaction between these immune cell populations and the pancreatic islets. SCOPE OF REVIEW: In this review article, we aim to discuss important recent insights into the multiple layers of interaction between immune cell populations and the pancreatic islets. Specifically, we discuss the environment where immune and beta cell interactions occur, the key cell types and molecules involved, and the outcomes of these interactions. MAJOR CONCLUSIONS: Most of the molecular mechanisms underlying aberrant immune cell activation and impaired immune tolerance remain insufficiently understood, which hinders the development of efficient prevention and treatment strategies. In order to overcome this knowledge gap, a better understanding of the complex interactions of immune cells and beta cells, including both the underlying protective and pathogenic mechanisms is urgently required.


Assuntos
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Ilhotas Pancreáticas , Autoimunidade , Comunicação Celular , Humanos , Células Secretoras de Insulina/patologia
9.
Diabetes ; 71(7): 1591-1596, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35499624

RESUMO

C-peptide declines in type 1 diabetes, although many long-duration patients retain low, but detectable levels. Histological analyses confirm that ß-cells can remain following type 1 diabetes onset. We explored the trends observed in C-peptide decline in the UK Genetic Resource Investigating Diabetes (UK GRID) cohort (N = 4,079), with ß-cell loss in pancreas donors from the network for Pancreatic Organ donors with Diabetes (nPOD) biobank and the Exeter Archival Diabetes Biobank (EADB) (combined N = 235), stratified by recently reported age at diagnosis endotypes (<7, 7-12, ≥13 years) across increasing diabetes durations. The proportion of individuals with detectable C-peptide declined beyond the first year after diagnosis, but this was most marked in the youngest age group (<1-year duration: age <7 years: 18 of 20 [90%], 7-12 years: 107 of 110 [97%], ≥13 years: 58 of 61 [95%] vs. 1-5 years postdiagnosis: <7 years: 172 of 522 [33%], 7-12 years: 604 of 995 [61%], ≥13 years: 225 of 289 [78%]). A similar profile was observed in ß-cell loss, with those diagnosed at younger ages experiencing more rapid loss of islets containing insulin-positive (insulin+) ß-cells <1 year postdiagnosis: age <7 years: 23 of 26 (88%), 7-12 years: 32 of 33 (97%), ≥13 years: 22 of 25 (88%) vs. 1-5 years postdiagnosis: <7 years: 1 of 12 (8.3%), 7-12 years: 7 of 13 (54%), ≥13 years: 7 of 8 (88%). These data should be considered in the planning and interpretation of intervention trials designed to promote ß-cell retention and function.


Assuntos
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Adolescente , Peptídeo C , Criança , Diabetes Mellitus Tipo 1/genética , Humanos , Lactente , Células Secretoras de Insulina/patologia , Pâncreas/patologia , Doadores de Tecidos
10.
Nat Genet ; 54(11): 1615-1620, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36333503

RESUMO

Gene expression is tightly regulated, with many genes exhibiting cell-specific silencing when their protein product would disrupt normal cellular function1. This silencing is largely controlled by non-coding elements, and their disruption might cause human disease2. We performed gene-agnostic screening of the non-coding regions to discover new molecular causes of congenital hyperinsulinism. This identified 14 non-coding de novo variants affecting a 42-bp conserved region encompassed by a regulatory element in intron 2 of the hexokinase 1 gene (HK1). HK1 is widely expressed across all tissues except in the liver and pancreatic beta cells and is thus termed a 'disallowed gene' in these specific tissues. We demonstrated that the variants result in a loss of repression of HK1 in pancreatic beta cells, thereby causing insulin secretion and congenital hyperinsulinism. Using epigenomic data accessed from public repositories, we demonstrated that these variants reside within a regulatory region that we determine to be critical for cell-specific silencing. Importantly, this has revealed a disease mechanism for non-coding variants that cause inappropriate expression of a disallowed gene.


Assuntos
Hiperinsulinismo Congênito , Células Secretoras de Insulina , Humanos , Hexoquinase/genética , Hexoquinase/metabolismo , Hiperinsulinismo Congênito/genética , Hiperinsulinismo Congênito/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Sequências Reguladoras de Ácido Nucleico/genética
11.
Acta Diabetol ; 55(3): 263-270, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29305766

RESUMO

AIMS: Insulin autoantibodies (IAA) are often the first marker of autoimmunity detected in children in the preclinical phase of type 1 diabetes (T1D). Currently, the vast majority of laboratories adopt the radiobinding micro-assay (RBA) for measuring IAA. Our aim was to replace RBA with a novel non-radioactive IAA Luciferase Immuno Precipitation System (LIPS) assay with improved performance. METHODS: We developed (pro)insulin antigens with alternative placements of a NanoLuc™ luciferase reporter (NLuc). Performance in LIPS was evaluated by testing sera from new onset T1D (n = 80), blood donors (n = 123), schoolchildren (n = 186), first-degree relatives (FDRs) from the Bart's Oxford family study (n = 53) and from the Belgian Diabetes Registry (n = 136), coded sera from the Islet Autoantibody Standardization Program (IASP) (T1D n = 50, blood donors n = 90). RESULTS: IAA LIPS based on B chain-NLuc proinsulin or B chain-NLuc insulin, in which NLuc was fused at the C-terminus of the insulin B chain, required only 2 µL of serum and a short incubation time, showed high concordance with RBA (Spearman r = 0.866 and 0.833, respectively), high assay performance (B chain-NLuc proinsulin ROC-AUC = 0.894 and B chain-NLuc insulin ROC-AUC = 0.916), and an adjusted sensitivity at 95% specificity ranking on par with the best assays submitted to the two most recent IASP workshops. In FDRs, the IAA LIPS showed improved discrimination of progressors to T1D compared to RBA. CONCLUSIONS: We established a novel high-performance non-radioactive IAA LIPS that might replace the current gold standard RBA and find wide application in the study of the IAA response in T1D.


Assuntos
Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/diagnóstico , Corantes Fluorescentes/metabolismo , Imunoprecipitação/métodos , Anticorpos Anti-Insulina/análise , Luciferases/metabolismo , Autoanticorpos/sangue , Biomarcadores/análise , Biomarcadores/metabolismo , Estudos de Casos e Controles , Criança , Corantes Fluorescentes/análise , Células HEK293 , Humanos , Insulina/imunologia , Anticorpos Anti-Insulina/sangue , Valor Preditivo dos Testes , Prognóstico , Proinsulina/imunologia , Sensibilidade e Especificidade
12.
Methods Mol Biol ; 1433: 57-83, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26659803

RESUMO

Type 1 diabetes (T1D) is a chronic inflammatory disease, caused by the immune mediated destruction of insulin-producing ß-cells in the islets of the pancreas (Ziegler and Nepom, Immunity 32(4):468-478, 2010). Semiquantitative assays with high specificity and sensitivity for T1D are now available to detect antibodies to the four major islet autoantigens: glutamate decarboxylase (GADA) (Baekkeskov et al., Nature 347(6289):151-156, 1990), the protein tyrosine phosphatase-like proteins IA-2 (IA-2A) and IA-2ß (Notkins et al., Diabetes Metab Rev 14(1):85-93, 1998), zinc transporter 8 (ZnT8A) (Wenzlau et al., Proc Natl Acad Sci U S A 104(43):17040-17045, 2007), and insulin (IAA) (Palmer, Diabetes Metab Rev 3(4):1005-1015, 1987). More than 85 % of cases of newly diagnosed or future T1D can be identified by testing for antibodies to GADA and/or IA-2A/IAA, with 98 % specificity (Bingley et al., Diabet Care 24(2):398, 2001). Overall, radioimmunoassay (RIA) is considered the de facto gold standard format for the measurement of T1D autoantibodies (Bottazzo et al., Lancet 2(7892):1279-1283, 1974; Schlosser et al., Diabetologia 53(12):2611-2620, 2010). Here we describe current methods for autoantibody measurement using RIA. These fluid phase assays use radiolabeled ligands and immunoprecipitation to quantify autoantibodies to GAD, IA-2, ZnT8, and insulin (Bonifacio et al., J Clin Endocrinol Metab 95(7):3360-3367, 2010; Long et al., Clin Endocrinol Metab 97(2):632-637, 2012; Williams et al., J Autoimmun 10(5):473-478, 1997).


Assuntos
Autoanticorpos/imunologia , Diabetes Mellitus Tipo 1/diagnóstico , Ilhotas Pancreáticas/imunologia , Radioimunoensaio/métodos , Autoanticorpos/análise , Autoantígenos/imunologia , Biomarcadores/análise , Diabetes Mellitus Tipo 1/imunologia , Humanos
13.
Diabetes ; 64(9): 3247-52, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26001397

RESUMO

GAD autoantibodies (GADAs) identify individuals at increased risk of developing type 1 diabetes, but many people currently found to be GADA positive are unlikely to progress to clinical disease. More specific GADA assays are therefore needed. Recent international workshops have shown that the reactivity of sera from healthy donors varies according to assay type and indicated that the use of N-terminally truncated GAD65 radiolabels in GADA radiobinding assays is associated with higher specificity. To determine whether a radiobinding assay using radiolabeled GAD65(96-585) identified individuals who are at higher risk of developing diabetes, samples from recent-onset patients and GADA-positive first-degree relatives participating in the Bart's-Oxford type 1 diabetes family study were reassayed with full-length or N-terminally truncated GAD using the National Institute of Diabetes and Digestive and Kidney Diseases harmonized protocol. The sensitivity in patients was the same with both labels, but fewer relatives retested positive with truncated GAD. Among relatives who progressed to diabetes, similar proportions were found to be GADA positive when tested with either label, but because of their higher specificity the cumulative risk of diabetes was higher in those with autoantibodies to GAD65(96-585). Autoantibodies to GAD65(96-585) in relatives are more closely associated with diabetes risk than those to full-length GAD, suggesting that assays using N-terminally truncated GAD should be used to select participants for intervention trials.


Assuntos
Autoanticorpos/imunologia , Diabetes Mellitus Tipo 1/imunologia , Família , Glutamato Descarboxilase/imunologia , Fragmentos de Peptídeos/imunologia , Adolescente , Adulto , Criança , Pré-Escolar , Diabetes Mellitus Tipo 1/genética , Progressão da Doença , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Sensibilidade e Especificidade , Adulto Jovem
14.
Diabetes ; 64(9): 3239-46, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25972570

RESUMO

GAD autoantibodies (GADAs) are sensitive markers of islet autoimmunity and type 1 diabetes. They form the basis of robust prediction models and are widely used for the recruitment of subjects at high risk of type 1 diabetes to prevention trials. However, GADAs are also found in many individuals at low risk of diabetes progression. To identify the sources of diabetes-irrelevant GADA reactivity, we analyzed data from the 2009 and 2010 Diabetes Autoantibody Standardization Program GADA workshop and found that binding of healthy control sera varied according to assay type. The characterization of control sera found positive by radiobinding assay (RBA), but negative by ELISA, showed that many of these sera reacted to epitopes in the N-terminal region of the molecule. This finding prompted development of an N-terminally truncated GAD65 radiolabel, (35)S-GAD65(96-585), which improved the performance of most GADA RBAs participating in an Islet Autoantibody Standardization Program GADA substudy. These detailed workshop comparisons have identified a source of disease-irrelevant signals in GADA RBAs and suggest that N-terminally truncated GAD labels will enable more specific measurement of GADAs in type 1 diabetes.


Assuntos
Autoanticorpos/análise , Diabetes Mellitus Tipo 1/diagnóstico , Ensaio de Imunoadsorção Enzimática , Glutamato Descarboxilase/imunologia , Ensaio Radioligante , Adolescente , Adulto , Estudos de Casos e Controles , Criança , Diabetes Mellitus Tipo 1/imunologia , Epitopos/imunologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Sensibilidade e Especificidade , Adulto Jovem
15.
Phytother Res ; 19(11): 963-70, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16317654

RESUMO

Kunzea ericoides is a member of the Myrtle group of tea trees. Leaf and twig material of K. ericoides was extracted with different solvents to afford terpene (including the essential oil), flavonoid and lipid classes (but no alkaloid class), which were subsequently screened for antibacterial, antitumour, cytotoxic, antioxidant and antiinflammatory activity. Differences were observed in the biological activity for the chemical classes tested, and in general, the leaf extracts were comparatively more bioactive than the twig extracts. The leaf lipid extract was the most bioactive fraction, exhibiting antibacterial, antitumour and antiinflammatory activity. Thin layer chromatography and gas chromatography-mass spectroscopy analysis of each extract revealed previously identified phytochemicals that may be responsible for the observed bioactivities.


Assuntos
Kunzea/química , Extratos Vegetais/análise , Extratos Vegetais/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Flavonoides/química , Cromatografia Gasosa-Espectrometria de Massas , Lipídeos/química , Testes de Sensibilidade Microbiana , Óleos Voláteis/química , Folhas de Planta/química , Caules de Planta/química , Terpenos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA