Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; : e2401241, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38660829

RESUMO

It is challenging to sufficiently regulate endogenous neuronal reactive oxygen species (ROS) production, reduce neuronal apoptosis, and reconstruct neural networks under spinal cord injury conditions. Here, hydrogel surface grafting and microsol electrospinning are used to construct a composite biomimetic scaffold with "external-endogenous" dual regulation of ROS. The outer hydrogel enhances local autophagy through responsive degradation and rapid release of rapamycin (≈80% within a week), neutralizing extracellular ROS and inhibiting endogenous ROS production, further reducing neuronal apoptosis. The inner directional fibers continuously supply brain-derived neurotrophic factors to guide axonal growth. The results of in vitro co-culturing show that the dual regulation of oxidative metabolism by the composite scaffold approximately doubles the neuronal autophagy level, reduces 60% of the apoptosis induced by oxidative stress, and increases the differentiation of neural stem cells into neuron-like cells by ≈2.5 times. The in vivo results show that the composite fibers reduce the ROS levels by ≈80% and decrease the formation of scar tissue. RNA sequencing results show that composite scaffolds upregulate autophagy-associated proteins, antioxidase genes, and axonal growth proteins. The developed composite biomimetic scaffold represents a therapeutic strategy to achieve neurofunctional recovery through programmed and accurate bidirectional regulation of the ROS cascade response.

2.
BMC Cardiovasc Disord ; 24(1): 266, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773462

RESUMO

BACKGROUND: Cardiopulmonary bypass (CPB) results in brain injury, which is primarily caused by inflammation. Ac2-26 protects against ischemic or hemorrhage brain injury. The present study was to explore the effect and mechanism of Ac2-26 on brain injury in CPB rats. METHODS: Forty-eight rats were randomized into sham, CPB, Ac, Ac/AKT1, Ac/GSK3ßi and Ac/AKT1/GSK3ßa groups. Rats in sham group only received anesthesia and in the other groups received standard CPB surgery. Rats in the sham and CPB groups received saline, and rats in the Ac, Ac/AKT1, Ac/GSK3ßi and Ac/AKT1/GSK3ßa groups received Ac2-26 immediately after CPB. Rats in the Ac/AKT1, Ac/GSK3ßi and Ac/AKT1/GSK3ßa groups were injected with shRNA, inhibitor and agonist of GSK3ß respectively. The neurological function score, brain edema and histological score were evaluated. The neuronal survival and hippocampal pyroptosis were assessed. The cytokines, activity of NF-κB, S100 calcium-binding protein ß(S100ß) and neuron-specific enolase (NSE), and oxidative were tested. The NLRP3, cleaved-caspase-1 and cleaved-gadermin D (GSDMD) in the brain were also detected. RESULTS: Compared to the sham group, all indicators were aggravated in rats that underwent CPB. Compared to the CPB group, Ac2-26 significantly improved neurological scores and brain edema and ameliorated pathological injury. Ac2-26 reduced the local and systemic inflammation, oxidative stress response and promoted neuronal survival. Ac2-26 reduced hippocampal pyroptosis and decreased pyroptotic proteins in brain tissue. The protection of Ac2-26 was notably lessened by shRNA and inhibitor of GSK3ß. The agonist of GSK3ß recovered the protection of Ac2-26 in presence of shRNA. CONCLUSIONS: Ac2-26 significantly improved neurological function, reduced brain injury via regulating inflammation, oxidative stress response and pyroptosis after CPB. The protective effect of Ac2-26 primarily depended on AKT1/ GSK3ß pathway.


Assuntos
Ponte Cardiopulmonar , Modelos Animais de Doenças , Glicogênio Sintase Quinase 3 beta , Proteínas Proto-Oncogênicas c-akt , Piroptose , Ratos Sprague-Dawley , Transdução de Sinais , Animais , Ponte Cardiopulmonar/efeitos adversos , Glicogênio Sintase Quinase 3 beta/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Piroptose/efeitos dos fármacos , Masculino , Neurônios/efeitos dos fármacos , Neurônios/patologia , Neurônios/metabolismo , Neurônios/enzimologia , Fármacos Neuroprotetores/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Edema Encefálico/prevenção & controle , Edema Encefálico/metabolismo , Edema Encefálico/enzimologia , Edema Encefálico/patologia , Anti-Inflamatórios/farmacologia , Ratos , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Mediadores da Inflamação/metabolismo
3.
Nucleic Acids Res ; 50(D1): D460-D470, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34850155

RESUMO

The last 18 months, or more, have seen a profound shift in our global experience, with many of us navigating a once-in-100-year pandemic. To date, COVID-19 remains a life-threatening pandemic with little to no targeted therapeutic recourse. The discovery of novel antiviral agents, such as vaccines and drugs, can provide therapeutic solutions to save human beings from severe infections; however, there is no specifically effective antiviral treatment confirmed for now. Thus, great attention has been paid to the use of natural or artificial antimicrobial peptides (AMPs) as these compounds are widely regarded as promising solutions for the treatment of harmful microorganisms. Given the biological significance of AMPs, it was obvious that there was a significant need for a single platform for identifying and engaging with AMP data. This led to the creation of the dbAMP platform that provides comprehensive information about AMPs and facilitates their investigation and analysis. To date, the dbAMP has accumulated 26 447 AMPs and 2262 antimicrobial proteins from 3044 organisms using both database integration and manual curation of >4579 articles. In addition, dbAMP facilitates the evaluation of AMP structures using I-TASSER for automated protein structure prediction and structure-based functional annotation, providing predictive structure information for clinical drug development. Next-generation sequencing (NGS) and third-generation sequencing have been applied to generate large-scale sequencing reads from various environments, enabling greatly improved analysis of genome structure. In this update, we launch an efficient online tool that can effectively identify AMPs from genome/metagenome and proteome data of all species in a short period. In conclusion, these improvements promote the dbAMP as one of the most abundant and comprehensively annotated resources for AMPs. The updated dbAMP is now freely accessible at http://awi.cuhk.edu.cn/dbAMP.


Assuntos
Peptídeos Antimicrobianos , Bases de Dados Factuais , Software , Peptídeos Antimicrobianos/química , Peptídeos Antimicrobianos/farmacologia , Genômica , Fases de Leitura Aberta , Conformação Proteica , Proteômica
4.
Small ; 19(15): e2207030, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36604983

RESUMO

The "double-edged sword" effect of macrophages under the influence of different microenvironments determines the outcome and prognosis of tissue injury. Accurate and stable reprogramming macrophages (Mφ) are the key to rapid wound healing. In this study, an immunized microsphere-engineered GelMA hydrogel membrane is constructed for oral mucosa treatment. The nanoporous poly(lactide-co-glycolide) (PLGA) microsphere drug delivery system combined with the photo-cross-linkable hydrogel is used to release the soybean lecithin (SL)and IL-4 complexes (SL/IL-4) sustainedly. In this way, it is realized effective wound fit, improvement of drug encapsulation, and stable triphasic release of interleukin-4 (IL-4). In both in vivo and in vitro experiments, it is demonstrated that the hydrogel membrane can reprogram macrophages in the microenvironment into M2Mφ anti-inflammatory types, thereby inhibiting the local excessive inflammatory response. Meanwhile, high levels of platelet-derived growth factor (PDGF) secreted by M2Mφ macrophages enhanced neovascular maturation by 5.7-fold, which assisted in achieving rapid healing of oral mucosa. These findings suggest that the immuno-engineered hydrogel membrane system can re-modulating the biological effects of Mφ, and potentiating the maturation of neovascularization, ultimately achieving the rapid repair of mucosal tissue. This new strategy is expected to be a safe and promising immunomodulatory biomimetic material for clinical translation.


Assuntos
Hidrogéis , Interleucina-4 , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Microesferas , Macrófagos , Mucosa
5.
Crit Care ; 27(1): 49, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36747296

RESUMO

BACKGROUND: Recent high-quality trials have shown that the anti-inflammatory effects of colchicine reduce the risk of cardiovascular events in patients suffering post-myocardial infarction and chronic coronary disease. The effect of colchicine in patients undergoing non-coronary artery bypass grafting (non-CABG) with cardiopulmonary bypass remains unclear. We aim to evaluate the effect of colchicine on myocardial protection in patients who underwent non-CABG cardiac surgery. METHOD: Patients were randomly assigned to colchicine or placebo groups starting 72 h before scheduled cardiac surgery and for 5 days thereafter (0.5 mg daily).The primary outcome was the level of cardiac troponin T (cTnT) at postoperative 48 h. The secondary outcomes included troponin I (cTnI) and creatine kinase-MB (CK-MB), inflammatory biomarkers (procalcitonin and interleukin-6, etc.), and adverse events (30-day mortality, stroke, ECMO and IABP use, etc.). RESULTS: A total of 132 patients underwent non-CAGB cardiac surgery, 11were excluded because of diarrhea (n = 6) and long aortic cross-clamp time > 2 h (n = 5), 59 were assigned to the colchicine group and 62 to the placebo group. Compared with the placebo group, cTnT (median: 0.3 µg/L, IQR 0.2-0.4 µg/L vs. median: 0.4 µg/L, IQR 0.3-0.6 µg/L, P < 0.01), cardiac troponin I (median: 0.9 ng/ml, IQR 0.4-1.7 ng/ml vs. median: 1.3 ng/ml, IQR 0.6-2.3 ng/ml, P = 0.02), CK-MB (median: 1.9 ng/ml, IQR 0.7-3.2 ng/ml vs. median: 4.4 ng/ml, IQR 1.5-8.2 ng/ml, P < 0.01), and interleukin-6 (median: 73.5 pg/ml, IQR 49.6-125.8 pg/ml vs. median: 101 pg/ml, IQR 57.5-164.7 pg/ml, P = 0.048) were significantly reduced in colchicine group at postoperative 48 h. For safety evaluation, the colchicine (n = 65) significantly decreased post-pericardiotomy syndrome (3.08% vs. 17.7%, P < 0.01) and increased the rate of diarrhea (9.23% vs. 0, P = 0.01) compared with the placebo group (n = 62). No significant difference was observed in other adverse events between the two groups. CONCLUSION: A short perioperative course of low-dose colchicine was effective to attenuate the postoperative biomarkers of myocardial injury and inflammation, and to decrease the postoperative syndrome compared with the placebo. Trial registration ChiCTR2000040129. Registered 22nd Nov. 2020. This trial was registered before the first participant was enrolled. http://www.chictr.org.cn/showproj.aspx?proj=64370 .


Assuntos
Infarto do Miocárdio , Troponina I , Humanos , Colchicina/farmacologia , Colchicina/uso terapêutico , Interleucina-6 , Creatina Quinase Forma MB , Troponina T , Biomarcadores
6.
Mol Phylogenet Evol ; 175: 107583, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35810971

RESUMO

Exploring the dynamic variations of viral genomes utilizing with a phylogenetic analysis is vital to control the pandemic and stop its waves. Genetic network can be applied to depict the complicated evolution relationships of viral genomes. However, current phylogenetic methods cannot handle the cases with deletions effectively. Therefore, the k-mer natural vector is employed to characterize the compositions and distribution features of k-mers occurring in a viral genome, and construct a one-to-one relationship between a viral genome and its k-mer natural vector. Utilizing the k-mer natural vector, we proposed a novel genetic network to investigate the variations of viral genomes in transmission among humans. With the assistance of genetic network, we identified the super-spreaders that were responsible for the pandemic outbreaks all over the world and chose the parental strains to evaluate the effectiveness of diagnostics, therapeutics, and vaccines. The obtaining results fully demonstrated that our genetic network can truly describe the relationships of viral genomes, effectively simulate virus spread tendency, and trace the transmission routes precisely. In addition, this work indicated that the k-mer natural vector has the ability to capture established hotspots of diversities existing in the viral genomes and understand how genomic contents change over time.


Assuntos
Redes Reguladoras de Genes , Vírus , Genoma Viral , Genômica , Humanos , Filogenia
7.
J Chem Inf Model ; 62(13): 3213-3226, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35708296

RESUMO

Human alkyladenine DNA glycosylase (AAG) is a key enzyme that corrects a broad range of alkylated and deaminated nucleobases to maintain genomic integrity. When encountering the lesions, AAG adopts a base-flipping strategy to extrude the target base from the DNA duplex to its active site, thereby cleaving the glycosidic bond. Despite its functional importance, the detailed mechanism of such base extrusion and how AAG distinguishes the lesions from an excess of normal bases both remain elusive. Here, through the Markov state model constructed on extensive all-atom molecular dynamics simulations, we find that the alkylated nucleobase (N3-methyladenine, 3MeA) everts through the DNA major groove. Two key AAG motifs, the intercalation and E131-N146 motifs, play active roles in bending/pressing the DNA backbone and widening the DNA minor groove during 3MeA eversion. In particular, the intercalated residue Y162 is involved in buckling the target site at the early stage of 3MeA eversion. Our traveling-salesman based automated path searching algorithm further revealed that a non-target normal adenine tends to be trapped in an exo site near the active site, which however barely exists for a target base 3MeA. Collectively, these results suggest that the Markov state model combined with traveling-salesman based automated path searching acts as a promising approach for studying complex conformational changes of biomolecules and dissecting the elaborate mechanism of target recognition by this unique enzyme.


Assuntos
DNA Glicosilases , Domínio Catalítico , DNA/química , DNA Glicosilases/química , DNA Glicosilases/genética , DNA Glicosilases/metabolismo , Reparo do DNA , Humanos
8.
Nano Lett ; 21(6): 2690-2698, 2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-33543616

RESUMO

Although injectable hydrogel microsphere has demonstrated tremendous promise in clinical applications, local overactive inflammation in degenerative diseases could jeopardize biomaterial implantation's therapeutic efficacy. Herein, an injectable "peptide-cell-hydrogel" microsphere was constructed by covalently coupling of APETx2 and further loading of nucleus pulposus cells, which could inhibit local inflammatory cytokine storms to regulate the metabolic balance of ECM in vitro. The covalent coupling of APETx2 preserved the biocompatibility of the microspheres and achieved a controlled release of APETx2 for more than 28 days in an acidic environment. By delivering "peptide-cell-hydrogel" microspheres to a rat degenerative intervertebral disc at 4 weeks, the expression of ASIC-3 and IL-1ß was significantly decreased for 3.53-fold and 7.29-fold, respectively. Also, the content of ECM was significantly recovered at 8 weeks. In summary, the proposed strategy provides an effective approach for tissue regeneration under overactive inflammatory responses.


Assuntos
Hidrogéis , Núcleo Pulposo , Animais , Materiais Biocompatíveis , Inflamação/tratamento farmacológico , Microesferas , Ratos
9.
Int J Mol Sci ; 23(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36498954

RESUMO

Bacteriophage T4 lysozyme (T4L) is a glycosidase that is widely applied as a natural antimicrobial agent in the food industry. Due to its wide applications and small size, T4L has been regarded as a model system for understanding protein dynamics and for large-scale protein engineering. Through structural insights from the single conformation of T4L, a series of mutations (L99A,G113A,R119P) have been introduced, which have successfully raised the fractional population of its only hydrolysis-competent excited state to 96%. However, the actual impact of these substitutions on its dynamics remains unclear, largely due to the lack of highly efficient sampling algorithms. Here, using our recently developed travelling-salesman-based automated path searching (TAPS), we located the minimum-free-energy path (MFEP) for the transition of three T4L mutants from their ground states to their excited states. All three mutants share a three-step transition: the flipping of F114, the rearrangement of α0/α1 helices, and final refinement. Remarkably, the MFEP revealed that the effects of the mutations are drastically beyond the expectations of their original design: (a) the G113A substitution not only enhances helicity but also fills the hydrophobic Cavity I and reduces the free energy barrier for flipping F114; (b) R119P barely changes the stability of the ground state but stabilizes the excited state through rarely reported polar contacts S117OG:N132ND2, E11OE1:R145NH1, and E11OE2:Q105NE2; (c) the residue W138 flips into Cavity I and further stabilizes the excited state for the triple mutant L99A,G113A,R119P. These novel insights that were unexpected in the original mutant design indicated the necessity of incorporating path searching into the workflow of rational protein engineering.


Assuntos
Bacteriófago T4 , Glicosídeo Hidrolases , Bacteriófago T4/genética , Estrutura Secundária de Proteína , Interações Hidrofóbicas e Hidrofílicas , Glicosídeo Hidrolases/genética , Mutação , Conformação Proteica
10.
Cell Biol Int ; 45(6): 1316-1326, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33620117

RESUMO

Hyperglycemia can drive advanced glycation end product (AGE) accumulation and associated nucleus pulposus cell (NPC) dysfunction, but the basis for this activity has not been elucidated. Hypoxia-inducible factor-1α (HIF-1α) is subject to cell-type-specific AGE-mediated regulation. In the current study, we assessed the mechanistic relationship between AGE accumulation and HIF-1α degradation in NPCs. Immunohistochemical staining of degenerated nucleus pulposus (NP) samples was used to assess AGE levels. AGE impact on NPC survival and glycolysis-related gene expression was assessed via 3-(4,5)-dimethylthiazol(-z-y1)-3,5-di-phenyltetrazolium bromide assay and quantitative reverse-transcription polymerase chain reaction (qRT-PCR), while HIF-1α expression in NPCs following AGE treatment was monitored via Western blot analysis and qRT-PCR. Additionally, a luciferase reporter assay was used to monitor HIF-1α transcriptional activity. The importance of the receptor for activated C-kinase 1 (RACK1) as a mediator of HIF-1α degradation was evaluated through gain- and loss-of-function experiments. Competitive binding of RACK1 and HSP90 to HIF-1α was evaluated via immunoprecipitation. Increased AGE accumulation was evident in NP samples from diabetic patients, and AGE treatment resulted in reduced HIF-1α protein levels in NPCs that coincided with reduced HIF-1α transcriptional activity. AGE treatment impaired the stability of HIF-1α, leading to its RACK1-mediated proteasomal degradation in a manner independent of the canonical PHD-mediated degradation pathway. Additionally, RACK1 competed with HSP90 for HIF-1α binding following AGE treatment. AGE treatment of NPCs leads to HIF-1α protein degradation. RACK1 competes with HSP90 for HIF-1α binding following AGE treatment, resulting in posttranslational HIF-1α degradation. These results suggest that AGE is an intervertebral disc degeneration risk factor, and highlight potential avenues for the treatment or prevention of this disease.


Assuntos
Produtos Finais de Glicação Avançada/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Hiperglicemia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Proteínas de Neoplasias/fisiologia , Núcleo Pulposo , Receptores de Quinase C Ativada/fisiologia , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patologia , Ligação Proteica
11.
Anal Bioanal Chem ; 413(25): 6225-6237, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34406463

RESUMO

The presence of reduced aminothiols, including homocysteine (Hcy), cysteine (Cys), cysteinyl-glycine (CG), and glutathione (GSH), is significantly increased in the pathological state. However, there have been no reports on the relationship between reduced aminothiols (Hcy, Cys, CG, and GSH) and different genders, ages, and drug combinations in human blood. The accurate quantification of these reduced thiols in biological fluids is important for monitoring some special pathological conditions of humans. However, the published methods typically not only require cumbersome and technically challenging processing procedures to ensure reliable measurements, but are also laborious and time-consuming, which may disturb the initial physiological balance and lead to inaccurate results. We developed a hollow fiber centrifugal ultrafiltration (HFCF-UF) method for sample preparation coupled with a high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method and used it to determine four reduced aminothiols (Hcy, Cys, CG, and GSH) in human blood for the first time. A total of 96 clinical patients were enrolled in our study. The influence of different genders, ages, and drug combinations on the levels of four reduced thiols in human blood was also discussed by SPSS 24.0. The sample preparation was simplified to a single 5 min centrifugation step in a sealed system that did not disturb the physiological environment. The validation parameters for the methodological results were excellent. The procedure was successfully applied to monitoring the concentrations of four reduced aminothiols (Hcy, Cys, CG, and GSH) in 96 clinical blood samples. There were no significant differences in Hcy, Cys, CG, or GSH for the different genders, ages, or combinations with methotrexate or vancomycin (P > 0.05). However, there was a significant increase in Hcy concentration in patients treated with valproic acid who were diagnosed with epilepsy (p=0.0007). It is advisable to measure reduced Hcy level in patients taking valproic acid. The developed HFCF-UF method was simple and accurate. It can be easily applied in clinical research to evaluate oxidative stress in further study.


Assuntos
Análise Química do Sangue/métodos , Cisteína/sangue , Dipeptídeos/sangue , Glutationa/sangue , Homocisteína/sangue , Ultrafiltração/métodos , Antibacterianos/sangue , Antibacterianos/química , Cromatografia Líquida de Alta Pressão/métodos , Cisteína/química , Dipeptídeos/química , Inibidores Enzimáticos/sangue , Inibidores Enzimáticos/química , Congelamento , Glutationa/química , Homocisteína/química , Humanos , Limite de Detecção , Metotrexato/sangue , Metotrexato/química , Estrutura Molecular , Espectrometria de Massas em Tandem/métodos , Temperatura , Ácido Valproico/sangue , Ácido Valproico/química , Vancomicina/sangue , Vancomicina/química
12.
Entropy (Basel) ; 23(11)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34828226

RESUMO

A model of rectangular microchannel heat sink (MCHS) with porous medium (PM) is developed. Aspect ratio of heat sink (HS) cell and length-width ratio of HS are optimized by numerical simulation method for entropy generation minimization (EGM) according to constructal theory. The effects of inlet Reynolds number (Re) of coolant, heat flux on bottom, porosity and volume proportion of PM on dimensionless entropy generation rate (DEGR) are analyzed. From the results, there are optimal aspect ratios to minimize DEGR. Given the initial condition, DEGR is 33.10% lower than its initial value after the aspect ratio is optimized. With the increase of Re, the optimal aspect ratio declines, and the minimum DEGR drops as well. DEGR gets larger and the optimal aspect ratio remains constant with the increasing of heat flux on bottom. For the different volume proportion of PM, the optimal aspect ratios are diverse, but the minimum DEGR almost stays unchanged. The twice minimized DEGR, which results from aspect ratio and length-width ratio optimized simultaneously, is 10.70% lower than the once minimized DEGR. For a rectangular bottom, a lower DEGR can be reached by choosing the proper direction of fluid flow.

13.
Biophys J ; 117(1): 74-86, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31164196

RESUMO

DNA-RNA hybrid (DRH) duplexes play essential roles during the replication of DNA and the reverse transcription of RNA viruses, and their flexibility is important for their biological functions. Recent experiments indicated that A-form RNA and B-form DNA have a strikingly different flexibility in stretching and twist-stretch coupling, and the structural flexibility of DRH duplex is of great interest, especially in stretching and twist-stretch coupling. In this work, we performed microsecond all-atom molecular dynamics simulations with new AMBER force fields to characterize the structural flexibility of DRH duplex in stretching and twist-stretch coupling. We have calculated all the helical parameters, stretch modulus, and twist-stretch coupling parameters for the DRH duplex. First, our analyses on structure suggest that the DRH duplex exhibits an intermediate conformation between A- and B-forms and closer to A-form, which can be attributed to the stronger rigidity of the RNA strand than the DNA strand. Second, our calculations show that the DRH duplex has the stretch modulus of 834 ± 34 pN and a very weak twist-stretch coupling. Our quantitative analyses indicate that, compared with DNA and RNA duplexes, the different flexibility of the DRH duplex in stretching and twist-stretch coupling is mainly attributed to its apparently different basepair inclination in the helical structure.


Assuntos
Pareamento de Bases , DNA de Forma B/química , Simulação de Dinâmica Molecular , RNA/química , Conformação de Ácido Nucleico
14.
J Chem Inf Model ; 59(10): 4393-4401, 2019 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-31585031

RESUMO

Cypridina bioluminescence has been increasingly used in bioimaging, bioanalysis, and biomedicine, due to high quantum yield and high signal-to-noise ratio. However, there is still no consensus regarding different aspects of the chemiluminescent mechanism of this system, which impairs the development of new applications. Herein, we have used a theoretical DFT and TD-DFT approach to (i) determine the identity of the dioxetanone species responsible for efficient chemiexcitation and (ii) identify the bioluminescent emitter and determine if light-emission occurs from the fluorescent or chemiluminescent state. Our results demonstrate that upon oxygenation of the imidazopyrazinone scaffold, a dioxetanone with a neutral amide group and a cationic guanidinopropyl group is formed. This species is efficiently chemiexcited (with no obvious charge transfer step) to the corresponding oxyluciferin with a neutral amide and cationic guanidinopropyl groups. After the "dark" chemiluminescent state, this oxyluciferin species is converted into a bright blue-emitting fluorescent state.


Assuntos
Crustáceos/química , Compostos Heterocíclicos com 1 Anel/química , Luz , Animais , Fluorescência , Humanos , Estrutura Molecular , Temperatura
15.
Zhongguo Dang Dai Er Ke Za Zhi ; 21(3): 203-207, 2019 Mar.
Artigo em Zh | MEDLINE | ID: mdl-30907340

RESUMO

OBJECTIVE: To investigate the level of IgG antibody to varicella in the healthy population aged 1-19 years in Harbin, China. METHODS: Random sampling was performed to select 1 203 healthy individuals aged 1-19 years in Harbin. According to age, they were divided into ≥1 years group (n=240), ≥4 years group (n=396), ≥7 years group (n=364) and 14-19 years group (n=203). Enzyme-linked immunosorbent assay was used to measure the concentration of varicella-zoster virus (VZV)-IgG antibody in serum, and a concentration of VZV-IgG antibody of ≥100 mIU/mL was considered positive, suggesting that the subject had the ability to resist VZV infection. RESULTS: The overall positive rate of VZV-IgG antibody was 71.49% (860/1 203), and the concentration of VZV-IgG antibody was 447±17 mIU/mL. The concentration of VZV-IgG antibody tended to increase with age (P<0.05). The positive rate of VZV-IgG antibody in the urban population was significantly higher than that in the rural population (P<0.05). There was significant difference in the positive rate of VZV-IgG antibody between the populations with different doses of varicella vaccination (P<0.05), and the population with 2 doses of vaccination had the highest positive rate of VZV-IgG antibody. There was a significant difference in the concentration of VZV-IgG antibody between the populations with different medical histories (P<0.05), and the population with a past history of varicella had the highest concentration. CONCLUSIONS: Among the healthy population aged 1-19 years in Harbin, there is a significant difference in the level of VZV-IgG antibody between the urban and rural populations, as well as between different age groups. Varicella vaccination should be strengthened in areas with a low vaccination rate and the population aged <14 years.


Assuntos
Varicela , Adolescente , Adulto , Anticorpos Antivirais , Varicela/epidemiologia , Criança , Pré-Escolar , China/epidemiologia , Herpesvirus Humano 3 , Humanos , Imunoglobulina G , Lactente , Estudos Soroepidemiológicos , Adulto Jovem
16.
Biophys J ; 114(8): 1776-1790, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29694858

RESUMO

Nucleic acids generally reside in cellular aqueous solutions with mixed divalent/monovalent ions, and the competitive binding of divalent and monovalent ions is critical to the structures of nucleic acids because of their polyanionic nature. In this work, we first proposed a general and effective method for simulating a nucleic acid in mixed divalent/monovalent ion solutions with desired bulk ion concentrations via molecular dynamics (MD) simulations and investigated the competitive binding of Mg2+/Na+ ions to various nucleic acids by all-atom MD simulations. The extensive MD-based examinations show that single MD simulations conducted using the proposed method can yield desired bulk divalent/monovalent ion concentrations for various nucleic acids, including RNA tertiary structures. Our comprehensive analyses show that the global binding of Mg2+/Na+ to a nucleic acid is mainly dependent on its structure compactness, as well as Mg2+/Na+ concentrations, rather than the specific structure of the nucleic acid. Specifically, the relative global binding of Mg2+ over Na+ is stronger for a nucleic acid with higher effective surface charge density and higher relative Mg2+/Na+ concentrations. Furthermore, the local binding of Mg2+/Na+ to a phosphate of a nucleic acid mainly depends on the local phosphate density in addition to Mg2+/Na+ concentrations.


Assuntos
DNA/química , DNA/metabolismo , Magnésio/metabolismo , Conformação de Ácido Nucleico , RNA/química , RNA/metabolismo , Sódio/metabolismo , Ligação Competitiva , Simulação de Dinâmica Molecular
17.
J Am Chem Soc ; 140(18): 5886-5889, 2018 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-29489347

RESUMO

Innovative detection techniques to achieve precise m6A distribution within mammalian transcriptome can advance our understanding of its biological functions. We specifically introduced the atom-specific replacement of oxygen with progressively larger atoms (sulfur and selenium) at 4-position of deoxythymidine triphosphate to weaken its ability to base pair with m6A, while maintaining A-T* base pair virtually the same as the natural one. 4SedTTP turned out to be an outstanding candidate that endowed m6A with a specific signature of RT truncation, thereby making this "RT-silent" modification detectable with the assistance of m6A demethylase FTO through next-generation sequencing. This antibody-independent, 4SedTTP-involved and FTO-assisted strategy is applicable in m6A identification, even for two closely gathered m6A sites, within an unknown region at single-nucleotide resolution.


Assuntos
Anticorpos/química , DNA de Cadeia Simples/química , Metiltransferases/análise , Selênio/química , Nucleotídeos de Timina/química , Anticorpos/metabolismo , DNA de Cadeia Simples/metabolismo , Humanos , Metiltransferases/metabolismo , Selênio/metabolismo , Nucleotídeos de Timina/metabolismo
18.
Eur Radiol ; 28(2): 877-885, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28779402

RESUMO

OBJECTIVES: This study sought to develop a clinical nomogram for predicting post-hepatectomy liver failure (PHLF) among patients with resectable hepatocellular carcinoma (HCC). METHODS: The nomogram was established based on data obtained from a prospective study on 136 consecutive patients with resectable HCC undergoing hepatectomy from January 2015 to December 2015 in our centre. Another 80 patients in our centre served as an independent internal validation set. The predictive accuracy and discriminative ability of the nomogram were determined by concordance index (C-index), calibration curve and compared with commonly predictive systems. RESULTS: PHLF occurred in 30.9% of patients in the derivation set, including 36 and six patients with Grades A and B, respectively. The statistical nomogram built on the basis of platelet count, serum bilirubin, serum GGT, clinical signs of portal hypertension and shear wave elastography had good calibration and discriminatory abilities, with C-indices of 0.85. These models showed satisfactory goodness-of-fit and discrimination abilities in the independent validation set with C-indices of 0.824 for PHLF. The areas under the receiver-operator characteristic (ROC) curve using our methods were greater than those of conventional predictive systems in the validation patients (corresponding C-indices, 0.572-0.701). CONCLUSIONS: This novel nomogram provides good preoperative prediction of PHLF in patients with resectable HCC. KEY POINTS: • The nomogram was built by platelet count, bilirubin, GGT, CSPH and SWE. • The nomogram showed good calibration and discriminatory abilities in the different sets. • Compared with other models, the nomogram indicated better discriminatory capability.


Assuntos
Carcinoma Hepatocelular/cirurgia , Hepatectomia/efeitos adversos , Falência Hepática/diagnóstico , Neoplasias Hepáticas/cirurgia , Nomogramas , Complicações Pós-Operatórias/diagnóstico , Técnicas de Imagem por Elasticidade , Feminino , Humanos , Falência Hepática/etiologia , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Curva ROC , Fatores de Risco
19.
Biophys J ; 113(3): 517-528, 2017 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-28793207

RESUMO

Ion-mediated interaction between DNAs is essential for DNA condensation, and it is generally believed that monovalent and nonspecifically binding divalent cations cannot induce the aggregation of double-stranded (ds) DNAs. Interestingly, recent experiments found that alkaline earth metal ions such as Mg2+ can induce the aggregation of triple-stranded (ts) DNAs, although there is still a lack of deep understanding of the surprising findings at the microscopic level. In this work, we employed all-atom dynamic simulations to directly calculate the potentials of mean force (PMFs) between tsDNAs, between dsDNAs, and between tsDNA and dsDNA in Mg2+ solutions. Our calculations show that the PMF between tsDNAs is apparently attractive and becomes more strongly attractive at higher [Mg2+], although the PMF between dsDNAs cannot become apparently attractive even at high [Mg2+]. Our analyses show that Mg2+ internally binds into grooves and externally binds to phosphate groups for both tsDNA and dsDNA, whereas the external binding of Mg2+ is much stronger for tsDNA. Such stronger external binding of Mg2+ for tsDNA favors more apparent ion-bridging between helices than for dsDNA. Furthermore, our analyses illustrate that bridging ions, as a special part of external binding ions, are tightly and positively coupled to ion-mediated attraction between DNAs.


Assuntos
DNA/química , DNA/metabolismo , Magnésio/química , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico
20.
Chemphyschem ; 18(1): 117-123, 2017 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-27806186

RESUMO

In spite of recent advances in understanding the mechanism of coelenterate bioluminescence, there is no consensus about which coelenteramide specie and/or state are the light emitter. In this study, a systematic investigation of the geometries and spectra of all possible light emitters has been performed at the TD ωB97XD/6-31+G(d) level of theory, including various fluorescent and chemiluminescent states in vacuum, in a hydrophobic environment and in aqueous solution. To deduce the most probable form of the fluorescent and chemiluminescent coelenteramide emitter, the equilibrium constants for the fluorescent and chemiluminescent states connecting the various species have been calculated. ωB97XD gives a qualitatively good description of fluorescent and chemiluminescent structures. Coelenteramide is formed in a "dark" chemiluminescent state and must evolve to a bright fluorescent state. Moreover, the photoacidity of the phenol group is significantly higher in the fluorescent state than in the chemiluminescent state, which allows the formation of phenolate coelenteramide and clarifies its role as the bioluminescent emitter.


Assuntos
Benzenoacetamidas/química , Fluorescência , Luminescência , Pirazinas/química , Termodinâmica , Estrutura Molecular , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA