Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Biol Rep ; 51(1): 428, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499842

RESUMO

BACKGROUND: Vascular endothelial growth factor (VEGF) signaling pathway plays an important role in the progression of diabetic retinopathy (DR). The glycosylation modification process of many key functional proteins in DR patients is abnormal. However, the potential involvement of abnormal N-glycoproteins in DR progression remains unclear. METHODS: Glycoproteomic profiling of the vitreous humor was performed. The level of protein and N-glycoprotein was confirmed by Western blot and Lectin blot, respectively. The cell viability and migration efficiency were detected by CCK-8 and Transwell assay. Flow cytometry was conducted to analyze the level of cell apoptosis and reactive oxygen specie. Malondialdehyde, superoxide dismutase activity and VEGF content were detected by Enzyme linked immunosorbent assays. The interaction of metalloproteinase 1 (TIMP-1) with N-acetylglucosamine transferase V (GnT-V) was detected by GST pull-down. Hematoxylin and eosin staining and choroidal and retinal flat mount stained with fluorescein isothiocyanate-Dextran assay were used for functional research in vivo. RESULTS: We found that N-glycosylation was up-regulated in DR rats and high glucose (HG)-induced human retinal pigment epithelium cell line ARPE-19. HG-induced inhibited the viability of ARPE-19 cells and promoted cell apoptosis and oxidative stress (OS), but these effects were reversed with kifunensine treatment, GnT-V knockdown and TIMP-1 mutation. Additionally, GnT-V binds to TIMP-1 to promote N-glycosylation of TIMP-1. Over-expression of GnT-V inhibited the viability of ARPE-19 cells and promoted cell apoptosis, OS and VEGF release, which these effects were reversed with TIMP-1 mutation. Interestingly, over-expression of GnT-V promoted retinal microvascular endothelial cells (RMECs) angiogenesis but was revered with TIMP-1 mutation, which was terminally boosted by VEGF-A treatment. Finally, knockdown of GnT-V relieved DR progression. CONCLUSION: The findings indicate that GnT-V can promote RMECs angiogenesis and ARPE-19 cells injury through activation VEGF signaling pathway by increasing TIMP-1 N-glycosylation level, which provides a new theoretical basis for the prevention of DR.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Animais , Humanos , Ratos , Movimento Celular , Diabetes Mellitus/metabolismo , Retinopatia Diabética/genética , Retinopatia Diabética/metabolismo , Células Endoteliais/metabolismo , Glucose/farmacologia , Glucose/metabolismo , Glicosilação , Inibidor Tecidual de Metaloproteinase-1/genética , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
2.
Exp Eye Res ; 222: 109157, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35718188

RESUMO

Diabetic retinopathy (DR) is a high-incidence microvascular complication with retinal neovascularization that generates irreversible visual impairment. However, the mechanism of DR is unclear and needs to be further explored. To explore the the effects of crocetin on expression of NEAT1 and miR-125b-5p and the proliferation activity, migration ability, and angiogenesis ability of human retinal microvascular endothelial cells (hRMECs), RT-qPCR, CCK-8, Transwell, and tube formation assays were performed. Additionally, Western blot was used to detect the expression of SOX7, VEGFA and CD31. Furthermore, a dual-luciferase reporter gene was used to verify the targeting connection. The DR mouse model was constructed by STZ. The effect of crocetin on DR angiogenesis was detected by hematoxylin-eosin (HE) staining, immunohistochemistry (IHC), retinal digest preparations and Western blot. The results showed that crocetin inhibited the high-glucose (Hg)-induced upregulation of NEAT1 and SOX7 and the downregulation of miR-125b-5p. Crocetin inhibited Hg-induced proliferation, migration and angiogenesis by upregulating the targeted inhibition of SOX7 by miR-125b-5p through the inhibition of NEAT1. To summarize, our study revealed that crocetin has a protective effect on Hg-induced DR by regulating the lncRNA NEAT1/miR-125b-5p/SOX7 molecular axis.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , MicroRNAs , RNA Longo não Codificante , Animais , Carotenoides , Proliferação de Células , Diabetes Mellitus/metabolismo , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/genética , Retinopatia Diabética/metabolismo , Células Endoteliais/metabolismo , Glucose/metabolismo , Glucose/toxicidade , Humanos , Camundongos , MicroRNAs/genética , Neovascularização Patológica/metabolismo , RNA Longo não Codificante/genética , Fatores de Transcrição SOXF/metabolismo , Vitamina A/análogos & derivados
3.
J Cell Biochem ; 120(8): 13133-13140, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31021425

RESUMO

BACKGROUND: Glaucoma is the world's second biggest cause of blindness, and patients progressively lose their eyesight. The current clinical treatment for glaucoma involves controlling intraocular pressure with drugs or surgery; however, some patients still progressively lose their eyesight. This treatment is also similar to the treatment of traumatic optic neuropathy. Thus, saving retinal ganglion cells (RGCs) from apoptosis is essential. METHODS: The role of Acteoside on autophagy modulation in the 661 W cell line. RESULTS: In this study, we first find that Acteoside inhibits autophagy, Rapamycin alleviates this inhibition and the PI3K inhibitor, 3-MA or LY294002, synergistically promotes it. In a mechanistic study, we find that Optineurin (OPTN) mediates Acteoside regulation of autophagy. OPTN overexpression or knockdown activates or inhibits autophagy, respectively. OPTN is inhibited by autophagy inhibitors, such as Acteoside and 3-MA and is promoted by the autophagy activator, Rapamycin. Meanwhile, PI3K and AKT are elevated by Acteoside and 3-MA and inhibited by Rapamycin. Finally, we find that Acteoside inhibits apoptosis in parallel to autophagy and that this inhibition is also mediated by OPTN. CONCLUSION: In summary, we conclude that Acteoside inhibits autophagy-induced apoptosis in RGCs through the OPTN and PI3K/AKT/mTOR pathway, and glaucoma patients may benefit from Acteoside treatment alone or in combination with other autophagy inhibitors.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Glaucoma/complicações , Glucosídeos/farmacologia , Atrofia Óptica/etiologia , Atrofia Óptica/metabolismo , Fenóis/farmacologia , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/efeitos dos fármacos , Animais , Linhagem Celular , Cromonas/farmacologia , Humanos , Camundongos , Microscopia Eletrônica de Transmissão , Morfolinas/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Ratos
4.
Exp Eye Res ; 174: 152-160, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29859143

RESUMO

OBJECTIVE: This study aims to explore the possible role of fenofibrate in inhibiting choroidal neovascularization (CNV) in Brown Norway (BN) rats. METHODS: BN rats underwent binocular retinal laser photocoagulation to induce CNV. On day one, fenofibrate was injected into the vitreous cavity of rats in the control and experimental groups. Fundus fluorescein angiography (FFA), isolectin B4-FITC staining, immunofluorescence staining, qRT-PCR and western blot were performed at 1, 2, 3 and 4 weeks to observe the morphological changes of CNV and the expression of the vascular endothelial growth factor C (VEGF-C) and the vascular endothelial growth factor receptor-3 (VEGFR-3). RESULTS: CNV with the spontaneous gradual regression and scarring phenomenon appeared in BN rats. In neovascularization, VEGF-C was mainly distributed in the ganglion cell layer, while VEGFR-3 was mainly expressed in the choroid. In the control group, choroidal VEGF-C initially increased, and subsequently decreased, while VEGFR-3 level maintained a constant level after the decrease. Both had a decreasing expression in the retina. The early formation of CNV was significantly weakened in the experimental group, but there was no difference in the later period. VEGF-C and VEGFR-3 expression in the choroid and retina were lower than in the control group. Furthermore, VEGFR-3 protein was not expressed in the retina. However, this gradually increased in the early period and declined in the terminal stage in the choroid. CONCLUSION: VEGF-C and VEGFR-3 participated in the laser-induced CNV formation in BN rats. Fenofibrate could inhibit CNV formation.


Assuntos
Neovascularização de Coroide/tratamento farmacológico , Fenofibrato/uso terapêutico , Hipolipemiantes/uso terapêutico , Fator C de Crescimento do Endotélio Vascular/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Análise de Variância , Animais , Corioide/metabolismo , Neovascularização de Coroide/metabolismo , Modelos Animais de Doenças , Angiofluoresceinografia , Masculino , PPAR alfa/agonistas , Ratos , Ratos Endogâmicos BN , Células Ganglionares da Retina/metabolismo
5.
J Mol Histol ; 55(2): 169-184, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38165565

RESUMO

Diabetic retinopathy (DR) is a serious microvascular complication of diabetes. The aim of this study was to explore the effect of Sestrin2 on DR through the regulation of autophagy and ferroptosis levels and its mechanism. In vitro and in vivo DR models were established by high glucose (HG) and streptozotocin (STZ) induction of ARPE-19 human retinal pigment epithelial cells and C57BL/6 mice, respectively. In this study, we demonstrated that after HG treatment, the activity of ARPE-19 cells was decreased, the apoptosis rate was increased, endoplasmic reticulum (ER) stress was activated, autophagy levels were decreased, and ferroptosis levels were increased. Overexpression of Sestrin2 enhanced cell viability, reduced apoptosis and ferroptosis, and enhanced autophagy. However, the effect of overexpression of Sestrin2 was attenuated after the addition of the STAT3 phosphorylation activator Colivelin TFA (C-TFA), the mTOR pathway activator MHY1485 or the autophagy inhibitor 3-methyladenine (3-MA). In addition, the effect of Sestrin2 knockdown on cells was opposite to the effect of overexpression of Sestrin2, while the effect of Sestrin2 knockdown was attenuated after treatment with the ER stress inhibitor 4-phenylbutyric acid (4-PBA). Animal experiments also confirmed the results of cell experiments and attenuated the effects of overexpression of Sestrin2 after injection of the ferroptosis activators erastin or 3-MA. Our study revealed that Sestrin2 inhibits ferroptosis by inhibiting STAT3 phosphorylation and ER stress and promoting autophagy levels, thereby alleviating DR.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Ferroptose , Animais , Humanos , Camundongos , Apoptose , Autofagia , Linhagem Celular , Retinopatia Diabética/etiologia , Camundongos Endogâmicos C57BL
6.
J Affect Disord ; 360: 126-136, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38815757

RESUMO

BACKGROUND: Healthcare professionals are in short supply worldwide, especially in China, which can result in increased stress in the work environment and allostatic load for Chinese hospital staff. This study aimed to investigate the prevalence of anxiety and depressive symptoms and their relationship with total stress, allostatic overload, sleep quality, and episodic memory among Chinese hospital staff. METHOD: In this cross-sectional study, self-assessments including Generalized Anxiety Disorder 7-item (GAD-7), Patient Health Questionnaire-9 (PHQ-9), PsychoSocial Index (PSI), Pittsburgh Sleeping Quality Index (PSQI), and MemTrax test were used to evaluate participants' anxiety symptoms, depressive symptoms, total stress, allostatic load/overload, sleep quality, and episodic memory. RESULTS: A total of 9433 hospital staff from 304 cities participated. Anxiety prevalence was 21.0 % (95 % confidential interval (CI) 20.2 %, 21.8 %), while the prevalence of depressive symptoms was at 21.4 % (95 % CI 20.5 %, 22.2 %). 79.8 % (95 % CI 79.0 %, 80.6 %) of the hospital staff had allostatic overload. Poor sleep quality affected 50.4 % of participants, and 32.1 % experienced poor episodic memory. LIMITATIONS: This study utilized a convenience sampling approach, relying on an online survey as its data collection method. CONCLUSIONS: Hospital staff in China are facing a stressful environment with a high prevalence of anxiety and depressive symptoms, significant allostatic overload, poor sleep quality, and compromised episodic memory. It is imperative that local management and community structures enhance their support and care for these essential workers, enabling them to manage and withstand the stresses of their professional roles effectively.


Assuntos
Ansiedade , Depressão , Recursos Humanos em Hospital , Humanos , Estudos Transversais , Masculino , Feminino , Adulto , China/epidemiologia , Depressão/epidemiologia , Ansiedade/epidemiologia , Recursos Humanos em Hospital/estatística & dados numéricos , Recursos Humanos em Hospital/psicologia , Pessoa de Meia-Idade , Prevalência , Qualidade do Sono , Inquéritos e Questionários , Alostase/fisiologia , Transtornos de Ansiedade/epidemiologia , Adulto Jovem , Estresse Psicológico/epidemiologia
7.
Artif Intell Med ; 145: 102665, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37925217

RESUMO

The occurrence of many diseases is associated with miRNA abnormalities. Predicting potential drug-miRNA associations is of great importance for both disease treatment and new drug discovery. Most computation-based approaches learn one task at a time, ignoring the information contained in other tasks in the same domain. Multitask learning can effectively enhance the prediction performance of a single task by extending the valid information of related tasks. In this paper, we presented a multitask joint learning framework (MTJL) with a graph autoencoder for predicting the associations between drugs and miRNAs. First, we combined multiple pieces of information to construct a high-quality similarity network of both drugs and miRNAs and then used a graph autoencoder (GAE) to learn their embedding representations separately. Second, to further improve the embedding quality of drugs, we added an auxiliary task to classify drugs using the learned representations. Finally, the embedding representations of drugs and miRNAs were linearly transformed to obtain the predictive association scores between them. A comparison with other state-of-the-art models shows that MTJL has the best prediction performance, and ablation experiments show that the auxiliary task can enhance the embedding quality and improve the robustness of the model. In addition, we show that MTJL has high utility in predicting potential associations between drugs and miRNAs by conducting two case studies.


Assuntos
MicroRNAs , MicroRNAs/genética , Algoritmos , Biologia Computacional
8.
Mol Cell Endocrinol ; 577: 112012, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37506869

RESUMO

BACKGROUND: Pyroptosis of retinal pigment epithelium (RPE) cells is associated with the etiology of diabetic retinopathy (DR). In this study, we investigated the effect of DNMT1 on RPE cell pyroptosis by regulating miR-20a/TXNIP expression through DNA methylation. METHODS: High glucose (HG)-induced ARPE-19 cells and mice were injected with streptozotocin (STZ) to generate DR cells and animal models. RT‒qPCR was used to detect the expression of miR-20a, and methylation-specific PCR (MS-PCR) was used to determine the occurrence of methylation of miR-20a. The expression of pyroptosis-related proteins (caspase-1 and NLRP3) and DNA methyltransferase (DNMT1) was detected by western blotting, and the expression of inflammatory factors (IL-1ß and IL-18) was detected by ELISA. Apoptosis was detected by flow cytometry and TUNEL. HE staining was used to observe the pathological changes in retinal tissue in mice. RESULTS: In HG-induced DR cell models, the expression of miR-20a was significantly downregulated, while the expression of inflammatory factors (IL-1ß, IL-18) and pyroptosis-associated proteins (caspase-1, NLRP3) was significantly upregulated. Transfection of miR-20a mimic can effectively reverse HG-induced pyroptosis and release of inflammatory factors. DNMT1 promotes miR-20a methylation and inhibits the expression of miR-20a. DNMT1-mediated methylation is involved in the pyroptosis process of high glucose-induced RPE cells, and silencing DNMT1 can promote the expression of miR-20a, thereby inhibiting the release of IL-1ß and IL-18 and reducing the occurrence of cell pyroptosis. miR-20a targets negative regulation of TXNIP expression, and overexpression of TXNIP can effectively reverse the inhibitory effect of miR-20a on pyroptosis. The methylation inhibitor 5-AZ can inhibit the occurrence of pyroptosis and DR processes, while treatment with a miR-20a inhibitor or OE-TXNIP can reverse the effect of 5-AZ. CONCLUSION: DNMT1 promotes DNA methylation, decreases the expression of miR-20a and increases the expression of TXNIP, which ultimately leads to the occurrence of pyroptosis in RPE cells.


Assuntos
Retinopatia Diabética , MicroRNAs , Camundongos , Animais , Piroptose/fisiologia , MicroRNAs/genética , MicroRNAs/metabolismo , Interleucina-18/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Metilação de DNA/genética , Caspase 1/metabolismo , Retinopatia Diabética/metabolismo , Glucose/farmacologia , Células Epiteliais/metabolismo , Pigmentos da Retina/metabolismo
9.
Ann Transl Med ; 10(6): 312, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35433984

RESUMO

Background: Glaucoma is the second leading cause of blindness in the world and is characterized by optic neuropathy and degeneration of retinal ganglion cells (RGCs). Our preliminary research found that acteoside can inhibit autophagy-induced apoptosis of RGCs via the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway. However, it is unclear how acteoside activates the PI3K/AKT signaling pathway to prevents RGCs autophagic apoptosis. Methods: Animal and cell models were used in this study. Hematoxylin-eosin staining revealed pathological histology of retinas. The number of RGCs in retinas was counted using immunofluorescence. Malondialdehyde and superoxide dismutase were determined using enzyme-linked immunosorbent assay kits. Flow cytometry and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling staining were used to detect cell apoptosis. The reactive oxygen species was determined by the Flow cytometry. The proteins were determined by Western blot. Results: The results showed that acteoside treatment significantly reduced RGC loss, oxidative stress, and autophagy, thereby preventing glaucoma exacerbation. Acteoside reversed caveolin 1 (Cav1) expression and PI3K/AKT signaling activation, according to Western blot results. Cav1 knockdown also reversed acteoside's effects on RGC loss, PI3K/AKT signaling pathway activation, autophagy and oxidative stress. Notably, 3-methyladenine, a PI3K inhibitor, reversed the effects of acteoside and Cav1 overexpression on RGC loss, oxidative stress, and autophagy. Conclusions: These finding imply that acteoside alleviates RGC loss and oxidative stress by activating of the PI3K/AKT signaling pathway by upregulating Cav1.

10.
Bioengineered ; 13(5): 11767-11781, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35543385

RESUMO

Globally, age-related macular degeneration (AMD) is a common irreversible ophthalmopathy. Oxidative stress of retinal pigment epithelial cells is involved in AMD occurrence and development. Klotho is an anti-aging protein with antioxidant properties. We investigated the protective properties of Klotho on hydrogen peroxide (H2O2)-induced injury of retinal pigment epithelial cells (ARPE-19 cells) and its associated pathomechanisms. We found that Klotho pretreatment for 24 h could up-regulate Bcl-2 levels, decrease the cleaved-caspase-3 and Bax levels, inhibit H2O2-induced ARPE-19 cell apoptosis, and promote cell proliferation. Klotho pretreatment inhibited the H2O2-mediated elevations of reactive oxygen species (ROS) in ARPE-19 cells. It enhanced antioxidant activities of the cells and restored the glutathione peroxidase (GPX), superoxide dismutase (SOD2), catalase (CAT), as well as malondialdehyde (MDA) levels to close to the normal level. N-acetylcysteine (NAC), a reactive oxygen scavenger, could reverse the harmful effects of H2O2 on proliferation, apoptosis, and oxidative stress of ARPE-19 cells. Further, Klotho pretreatment enhanced Akt phosphorylation and expression as well as nuclear translocation of Nrf2 in H2O2-treated ARPE-19 cells. This indicates that Klotho protects cells from oxidative stress by activating phosphatidylinositol 3 kinase (PI3K)/protein kinase B (Akt)-nuclear factor E2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1) signaling pathway. Klotho is, therefore, a potential preventive or treatment option for AMD.


Assuntos
Heme Oxigenase-1 , Fator 2 Relacionado a NF-E2 , Antioxidantes/farmacologia , Apoptose , Sobrevivência Celular , Células Epiteliais/metabolismo , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/toxicidade , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Pigmentos da Retina/metabolismo , Pigmentos da Retina/farmacologia , Transdução de Sinais
11.
Ann Transl Med ; 10(1): 5, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35242850

RESUMO

BACKGROUND: Loss of retinal ganglion cells (RGCs), which eventually leads to optic nerve atrophy and vision loss, is the main cause of glaucoma and traumatic optic neuropathy. Acteoside is the effective component of Yunnan Kudingcha, which has been reported to exert neuroprotective effects and protects RGCs from injury. However, the underlying mechanisms of acteoside in RGC injury remain largely elusive. METHODS: Human RGCs was treated with hydrogen peroxide (H2O2). The expression of miR-155 and lncRNA CASC2 in RGC-5 cells was measured by RT-qPCR. The viability of RGCs was determined by the MTT assay. Flow cytometry and TUNEL staining were used to detect cell apoptosis. The malondialdehyde (MDA) content and superoxide dismutase (SOD) activity were determined using ELISA kits. The mTOR and autophagic proteins were measured by western blot. RESULTS: We identified the expression of miR-155 was upregulated in H2O2-treated RGCs, and enhanced miR-155 promoted RGC autophagy and apoptosis. Acteoside administration reduced miR-155 expression and abolished miR-155-mediated RGC injury. The expression of CASC2 was decreased in H2O2-treated RGCs. Acteoside administration could increase CASC2 expression and CASC2 overexpression reverses the effect of miR-155 overexpression on acteoside treatment-RGCs. Mechanistically, we discovered that highly expressed miR-155 promoted RGC autophagy and apoptosis via the mTOR pathway. In addition, acteoside attenuated RGC autophagy and apoptosis via the miR-155/mTOR axis. Together, these results identify a mechanism by which acteoside attenuates H2O2-induced RGC apoptosis and autophagy via the CASC2/miR-155/mTOR axis. CONCLUSIONS: Acteoside protects RGC-5 cells against H2O2-induced cell injury via the CASC2/miR-155/mTOR axis. These results provide new insights for early medical interventions in patients with glaucoma.

12.
Aging (Albany NY) ; 12(9): 8137-8150, 2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32365051

RESUMO

Methyltransferase-like protein 3 (METTL3) regulates multiple cell functions and diseases by modulating N6-methyladenosine (m6A) modifications. However, it is still unclear whether METTL3 involves in the pathogenesis of diabetic retinopathy (DR). In the present study, we found that high-glucose inhibited RPE cell proliferation, promoted cell apoptosis and pyroptosis in a time-dependent manner. In addition, both METTL3 mRNA and miR-25-3p were low-expressed in the peripheral venous blood samples of diabetes mellitus (DM) patients compared to normal volunteers, and high-glucose inhibited METTL3 and miR-25-3p expressions in RPE cells. As expected, upregulation of METTL3 and miR-25-3p alleviated the cytotoxic effects of high-glucose on RPE cells, and knock-down of METTL3 and miR-25-3p had opposite effects. Additionally, METTL3 overexpression increased miR-25-3p levels in RPE cells in a microprocessor protein DGCR8-dependent manner, and miR-25-3p ablation abrogated the effects of overexpressed METTL3 on cell functions in high-glucose treated RPE cells. Furthermore, PTEN could be negatively regulated by miR-25-3p, and overexpression of METTL3 increased phosphorylated Akt (p-Akt) levels by targeting miR-25-3p/PTEN axis. Consistently, upregulation of PTEN abrogated the protective effects of METTL3 overexpression on RPE cells treated with high-glucose. Collectively, METTL3 rescued cell viability in high-glucose treated RPE cells by targeting miR-25-3p/PTEN/Akt signaling cascade.


Assuntos
Retinopatia Diabética/genética , Regulação da Expressão Gênica , Metiltransferases/genética , MicroRNAs/genética , PTEN Fosfo-Hidrolase/genética , Proteínas Proto-Oncogênicas c-akt/genética , Epitélio Pigmentado da Retina/metabolismo , Apoptose , Proliferação de Células , Retinopatia Diabética/metabolismo , Retinopatia Diabética/patologia , Glucose/farmacologia , Humanos , Metiltransferases/biossíntese , MicroRNAs/biossíntese , PTEN Fosfo-Hidrolase/biossíntese , Subunidades Proteicas , Proteínas Proto-Oncogênicas c-akt/biossíntese , Piroptose , Epitélio Pigmentado da Retina/patologia , Transdução de Sinais , Proteínas Supressoras de Tumor
13.
Int J Ophthalmol ; 13(4): 525-534, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32399401

RESUMO

AIM: To investigate the relationships between the changes of heat shock protein 27 antibody (anti-HSP27) in serum/cerebrospinal fluid (CSF), intraocular pressure (IOP), retinal ganglion cell (RGC) apoptosis in a rat glaucoma model and disclose the underlying pathogenesis of glaucoma. METHODS: A total of 115 Wistar rats were randomly divided into 4 groups. Group 1 was the ocular hypertension group by condensing 3 episcleral & limbal veins or episcleral area of right eye (HP group, n=25) and sham operation group with conjunctiva incision without coagulation (n=25). Group 2: HSP27 or dose-matched PBS was injected into the vitreous (V-HSP27 group, n=15; V-PBS group, n=15). Group 3: HSP27 and complete Freund's adjuvant or dose-matched PBS was injected subcutaneously into the hind limb accompanied intraperitoneal injection of pertussis toxin [sensitized group (I-HSP27 group), n=15; I-PBS group, n=15)]. Group 4 was normal group without any treatment (n=5). IOPs of the rats were measured before, day 3, weeks 1, 2, 4, 6, and 8 after treatment. Paraffin-embedded sections were prepared for HE staining and RGCs apoptosis were detected by TUNEL. Anti-HSP27 level in serum and CSF were examined by ELISA. RESULTS: IOPs were elevated significantly in HP and V-HSP27, V-PBS groups (P<0.01) and positively related to anti-HSP27 levels in serum and CSFs. Anti-HSP27 levels in serum and CSF were elevated significantly in I-HSP27 group compared to other groups (P<0.05). However, the IOPs did not show any relationship with the high-level anti-HSP27 in serum and CSFs. RGC apoptosis were all elevated significantly in the HP, V-HSP27, V-PBS and I-HSP27 groups and also positively relative with anti-HSP27 level in serum and CSFs except that high-level of anti-HSP27 in the serum of I-HSP group. CONCLUSION: The increases of anti-HSP27 levels in serum and CSFs both promote IOP escalation and the increase of RGC apoptosis in retina when anti-HSP27 is at low level. The case of high-level anti-HSP27 is opposite and shows protective function in preventing IOP increase and RGC apoptosis.

14.
Biomed Pharmacother ; 125: 109924, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32018221

RESUMO

High-glucose induced retinal pigment epithelium (RPE) death by triggering oxidative stress, however, the underlying mechanisms are still not fully delineated. In this study, the RPE cell line ARPE-19 were treated with different concentrations of glucose, the results showed that high-glucose (50 mM) inhibited cell proliferation, promoted cell apoptosis and reactive oxygen species (ROS) production in a time-dependent manner. Notably, we found that high-glucose (50 mM) increased the expression levels of Caspase-1, Gasdermin D, NLRP3, IL-1ß and IL-18 in ARPE-19 cells, which indicated that high-glucose triggered pyroptotic cell death. Further results validated that both ROS scavenger N-acetyl cysteine (NAC) and pyroptosis inhibitor necrosulfonamide (NSA) reversed the effects of high-glucose (50 mM) on ARPE-19 cell proliferation, apoptosis and pyroptosis. In addition, high-glucose (50 mM) significantly decreased the levels of miR-130a and superoxide dismutase (SOD) 1, and promoted tumor necrosis factor (TNF)-α expressions in ARPE-19 cells. Interestingly, upregulation of miR-130a increased SOD1 levels in a TNF-α dependent manner. Furthermore, overexpression of miR-130a abrogated the effects of high-glucose (50 mM) on the above cell functions, which were all reversed by either upregulating TNF-α or knocking down SOD1 in ARPE-19 cells. Taken together, upregulation of miR-130a alleviated the cytotoxic effects of high-glucose (50 mM) on ARPE-19 cells by regulating TNF-α/SOD1/ROS axis mediated pyroptotic cell death.


Assuntos
Glucose/metabolismo , MicroRNAs/genética , Piroptose/fisiologia , Epitélio Pigmentado da Retina/patologia , Apoptose/fisiologia , Linhagem Celular , Proliferação de Células/fisiologia , Técnicas de Silenciamento de Genes , Humanos , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase-1/metabolismo , Fatores de Tempo , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima
16.
Biomed Pharmacother ; 111: 1315-1325, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30841445

RESUMO

Diabetic retinopathy (DR) seriously endangers human beings' health, uncovering the underlying mechanism might help to cure DR. In this study, we found that the effects of glucose on retinal pigment epithelium (RPE) varies in a dose dependent manner, high-glucose (50mM) promotes reactive oxygen species (ROS) generation and cell apoptosis, inhibits cell mitophagy as well as proliferative abilities, while low-glucose (15mM) induces ROS production and cell mitophagy, but has little impacts on cell apoptosis and proliferation. Of note, the toxic effects of high-glucose (50mM) on RPE are alleviated by ROS scavengers and aggravated by autophagy inhibitor 3-methyladenine (3-MA) or mitophagy inhibitor cyclosporin A (CsA). High-glucose (50mM) induced ROS generation is merely eliminated by ROS scavengers instead of mitophagy or autophagy inhibitor. We also proved that high-glucose (50mM) inhibits cell proliferation and promotes cell apoptosis by regulating ROS mediated inhibition of mitophagy. In addition, mitophagy associated proteins PINK1 and Parkin are downregulated by high-glucose (50mM) or hydrogen peroxide treatments, which are reversed by ROS scavengers. Of note, Knock-down of PINK1 decreases phospharylated Parkin instead of total Parkin levels in RPE. Intriguingly, high-glucose's inhibiting effects on cell mitophagy as well as proliferation and its promoting effects on cell apoptosis are reversed by either PINK1 or Parkin overexpression. Therefore, we concluded that high-glucose promotes RPE apoptosis and inhibits cell proliferation as well as mitophagy by regulating ROS mediated inactivation of ROS/PINK1/Parkin signal pathway.


Assuntos
Apoptose/efeitos dos fármacos , Glucose/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Epitélio Pigmentado da Retina/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Linhagem Celular , Regulação para Baixo/efeitos dos fármacos , Humanos , Mitocôndrias/metabolismo , Proteínas Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Transdução de Sinais/fisiologia , Ubiquitina-Proteína Ligases/metabolismo
17.
Exp Ther Med ; 10(4): 1404-1412, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26622498

RESUMO

The aim of the present study was to examine the mechanisms through which fenofibrate inhibits the ability of human retinal pigment epithelial cells (RPE cells) exposed to hypoxia to stimulate the proliferation and migration of human umbilical vein endothelial cells (HUVECs). For this purpose, RPE cells and HUVECs were divided into the following groups: RPE-normoxia, RPE + fenofibrate, RPE-hypoxia, RPE hypoxia + fenofibrate; HUVECs normal culture and HUVECs + RPE-hypoxia culture supernatant. RPE cell hypoxia was induced by cobalt(II) chloride (CoCl2). A superoxide anion probe was used to measure the production of superoxide anion, which is indicative of hypoxic conditions. Cell proliferation was assessed by MTT assay, and the expression of vascular endothelial growth factor C (VEGFC) and vascular endothelial growth factor receptor-3 (VEGFR-3) in the RPE cell culture supernatant was measured by enzyme-linked immunosorbent assay (ELISA). The migration ability of the HUVECs was determined by scratch-wound assay, and the angiogenic ability of the HUVECs was examined by measuring cell lumen formation. The mRNA and protein expression levels of VEGFC and VEGFR-3 in the RPE cells were measured by RT-qPCR and western blot analysis, respectively. Our results revealed that fenofibrate inhibited the increase in the expression and release of VEGFC and VEGFR-3 into the RPE cell culture supernatant induced by exposure to hypoxia. The culture of HUVECs in medium supernatant of RPE cells epxosed to hypoxia enhanced the viability and migration ability of the HUVECs and promoted lumen formation; these effects were inhibited by fenofibrate. In conclusion, our data demonstrated that the exposure of RPE cells to hypoxia induced the expression and release of VEGFC and VEGFR-3 into the cell culture supernatant. The culture of HUVECs in conditioned medium from RPE cells exposed to hypoxia increased VEGFC and VEGFR-3 expression, and promoted the proliferation and migration of the HUVECs, as well as capillary tube formation, suggesting that RPE cells play an important role in the formation of choroidal neovascularization resulting from hypoxia. Fenofibrate inhibited the upregulation of VEGFC and VEGFR-3 in the RPE cells exposed to hypoxia, and thus reduced the ability of HUVECs to form new blood vessels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA