RESUMO
As part of a new snowpack monitoring framework, this study evaluated the feasibility of using an LED LIDAR (Leddar) time of flight sensor for snowpack depth measurement. The Leddar sensor has two additional features over simple sonic ranging sensors: (i) the return signal is divided into 16 segments across a 48° field of view, each recording individual distance-to-target (DTT) measurements; (ii) an index of reflectance or intensity signal is recorded for each segment. These two features provide information describing snowpack morphology and surface condition. The accuracy of Leddar sensor DTT measurements for snow depth monitoring was found to be < 20 mm, which was better than the 50 mm quoted by the manufacturer, and the precision was < 5 mm. Leddar and independent sonic ranger snow depth measurement showed strong linear agreement (r2 = 0.98). There was also a strong linear relationship (r2 = 0.98) between Leddar and manual field snow depth measurements. The intensity signal response was found to correlate with snow surface albedo and inversely with air temperature (r = 0.77 and -0.77, respectively).
RESUMO
A growing need for sampling environmental spaces in high detail is driving the rapid development of non-destructive three-dimensional (3D) sensing technologies. LiDAR sensors, capable of precise 3D measurement at various scales from indoor to landscape, still lack affordable and portable products for broad-scale and multi-temporal monitoring. This study aims to configure a compact and low-cost 3D fusion scanning system (FSS) with a multi-segment Leddar (light emitting diode detection and ranging, LeddarTech), a monocular camera, and rotational robotics to recover hemispherical, colored point clouds. This includes an entire framework of calibration and fusion algorithms utilizing Leddar depth measurements and image parallax information. The FSS was applied to scan a cottonwood (Populus spp.) stand repeatedly during autumnal leaf drop. Results show that the calibration error based on bundle adjustment is between 1 and 3 pixels. The FSS scans exhibit a similar canopy volume profile to the benchmarking terrestrial laser scans, with an r2 between 0.5 and 0.7 in varying stages of leaf cover. The 3D point distribution information from FSS also provides a valuable correction factor for the leaf area index (LAI) estimation. The consistency of corrected LAI measurement demonstrates the practical value of deploying FSS for canopy foliage monitoring.