Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Cell ; 34(5): 1912-1932, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35171272

RESUMO

Grain chalkiness reduces the quality of rice (Oryza sativa) and is a highly undesirable trait for breeding and marketing. However, the underlying molecular cause of chalkiness remains largely unknown. Here, we cloned the F-box gene WHITE-CORE RATE 1 (WCR1), which negatively regulates grain chalkiness and improves grain quality in rice. A functional A/G variation in the promoter region of WCR1 generates the alleles WCR1A and WCR1G, which originated from tropical japonica and wild rice Oryza rufipogon, respectively. OsDOF17 is a transcriptional activator that binds to the AAAAG cis-element in the WCR1A promoter. WCR1 positively affects the transcription of the metallothionein gene MT2b and interacts with MT2b to inhibit its 26S proteasome-mediated degradation, leading to decreased reactive oxygen species production and delayed programmed cell death in rice endosperm. This, in turn, leads to reduced chalkiness. Our findings uncover a molecular mechanism underlying rice chalkiness and identify the promising natural variant WCR1A, with application potential for rice breeding.


Assuntos
Endosperma , Oryza , Grão Comestível/genética , Endosperma/genética , Regulação da Expressão Gênica de Plantas/genética , Homeostase/genética , Oryza/genética , Oryza/metabolismo , Oxirredução
2.
Physiol Plant ; 176(1): e14206, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38356346

RESUMO

Aroma or fragrance in rice is a genetically controlled trait; Its high appreciation by consumers increases the rice market price. Previous studies have revealed that the rice aroma is controlled by a specific gene called BETAINE ALDEHYDE DEHYDROGENASE (OsBADH2), and mutation of this gene leads to the accumulation of an aromatic substance 2-acetyl-1-pyrroline (2-AP). The use of genetic engineering to produce aroma in commercial and cultivated hybrids is a contemporary need for molecular breeding. The current study reports the generation of aroma in the three-line hybrid restorer line Shu-Hui-313 (SH313). We created knock-out (KO) lines of OsBADH2 through the CRISPR/Cas9. The analysis of KO lines revealed a significantly increased content of 2AP in the grains compared with the control. However, other phenotypic traits (plant height, seed setting rate, and 1000-grain weight) were significantly decreased. These KO lines were crossed with a non-aromatic three-line hybrid rice male sterile line (Rong-7-A) to produce Rong-7-You-626 (R7Y626), R7Y627 and R7Y628. The measurement of 2-AP revealed significantly increased contents in these cross combinations. We compared the content of 2-AP in tissues at the booting stage. Data revealed that young spike stalk base contained the highest content of 2-AP and can be used for identification (by simple chewing) of aromatic lines under field conditions. In conclusion, our dataset offers a genetic source and illustrates the generation of aroma in non-aromatic hybrids, and outlines a straightforward identification under field conditions.


Assuntos
Betaína/análogos & derivados , Oryza , Oryza/genética , Sistemas CRISPR-Cas/genética , Odorantes , Genes de Plantas
3.
Mol Med ; 29(1): 86, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37400752

RESUMO

BACKGROUND: Osteoarthritis (OA) is a degenerative joint disease with lacking effective prevention targets. A disintegrin and metalloproteinase with thrombospondin motifs 12 (ADAMTS12) is a member of the ADAMTS family and is upregulated in OA pathologic tissues with no fully understood molecular mechanisms. METHODS: The anterior cruciate ligament transection (ACL-T) method was used to establish rat OA models, and interleukin-1 beta (IL-1ß) was administered to induce rat chondrocyte inflammation. Cartilage damage was analyzed via hematoxylin-eosin, Periodic Acid-Schiff, safranin O-fast green, Osteoarthritis Research Society International score, and micro-computed tomography assays. Chondrocyte apoptosis was detected by flow cytometry and TdT dUTP nick-end labeling. Signal transducer and activator of transcription 1 (STAT1), ADAMTS12, and methyltransferase-like 3 (METTL3) levels were detected by immunohistochemistry, quantitative polymerase chain reaction (qPCR), western blot, or immunofluorescence assay. The binding ability was confirmed by chromatin immunoprecipitation-qPCR, electromobility shift assay, dual-luciferase reporter, or RNA immunoprecipitation (RIP) assay. The methylation level of STAT1 was analyzed by MeRIP-qPCR assay. STAT1 stability was investigated by actinomycin D assay. RESULTS: The STAT1 and ADAMTS12 expressions were significantly increased in the human and rat samples of cartilage injury, as well as in IL-1ß-treated rat chondrocytes. STAT1 is bound to the promoter region of ADAMTS12 to activate its transcription. METTL3/ Insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) mediated N6-methyladenosine modification of STAT1 promoted STAT1 mRNA stability, resulting in increased expression. ADAMTS12 expression was reduced and the IL-1ß-induced inflammatory chondrocyte injury was attenuated by silencing METTL3. Additionally, knocking down METTL3 in ACL-T-produced OA rats reduced ADAMTS12 expression in their cartilage tissues, thereby alleviating cartilage damage. CONCLUSION: METTL3/IGF2BP2 axis increases STAT1 stability and expression to promote OA progression by up-regulating ADAMTS12 expression.


Assuntos
MicroRNAs , Osteoartrite , Ratos , Humanos , Animais , Osteoartrite/metabolismo , Microtomografia por Raio-X , Células Cultivadas , Cartilagem/metabolismo , Condrócitos/metabolismo , Interleucina-1beta/metabolismo , MicroRNAs/metabolismo , Apoptose , Proteínas ADAMTS/genética , Proteínas ADAMTS/metabolismo , Metiltransferases/metabolismo , Proteínas de Ligação a RNA/metabolismo
4.
Theor Appl Genet ; 135(8): 2675-2685, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35715647

RESUMO

KEY MESSAGE: qFC6, a major quantitative trait locus for rice crude fat content, was fine mapped to be identical with Wx. FC6 negatively regulates crude fat content and rice quality. Starch, protein and lipids are the three major components in rice endosperm. The lipids content in rice influences both storage and quality. In this study, we identified a quantitative trait locus (QTL), qFC6, for crude fat (free lipids) content through association analysis and linkage analysis. Gene-based association analysis revealed that LOC_Os06g04200, also known as Wx, was the candidate gene for qFC6. Complementation and knockout transgenic lines revealed that Wx negatively regulates crude fat content. Lipid composition and content analysis by gas chromatography and taste evaluation analysis showed that FC6 positively influenced bound lipids content and negatively affected both free lipids content and taste. Besides, higher free lipids content rice varieties exhibit more lustrous appearance after cooking and by adding extra oil during cooking could improve rice luster and taste score, indicating that higher free lipids content may make rice more lustrous and delicious. Together, we cloned a QTL coordinating rice crude fat content and eating quality and assisted in uncovering the genetic basis of rice lipid content and in the improvement of rice eating quality.


Assuntos
Oryza , Amilose/química , Ligação Genética , Lipídeos , Oryza/metabolismo , Locos de Características Quantitativas , Amido/química
5.
Mol Breed ; 42(11): 68, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37313476

RESUMO

Rice grain size is a key determinant of both grain yield and quality. In this study, we conducted QTL mapping on grain size using a recombinant inbred line (RIL) population derived from a cross between japonica variety Beilu130 (BL130) and indica variety Jin23B (J23B). A total of twenty-two QTL related to grain length (GL), grain width (GW), grain length-to-width ratio (LWR), grain thickness (GT), and thousand grain weight (TGW) were detected under two environments, and 14 of them were repeatedly detected. Two minor QTL, qTGW2b and qGL9, were validated and further delimited to regions of 631 kb and 272 kb, respectively. Parental sequence comparison of genes expressed in inflorescence in corresponding candidate regions identified frameshifts in the exons of LOC_Os02g38690 and LOC_Os02g38780, both of which encode protein phosphatase 2C-containing protein, and LOC_Os09g29930, which encodes a BIM2 protein. Scanning electron microscopy (SEM) analysis revealed that the increase of cell size rather than cell number caused the differences in grain size between NILs of qTGW2b and qGL9. Quantitative RT-PCR analysis showed that the expression levels of EXPA4, EXPA5, EXPA6, EXPB3, EXPB4, and EXPB7 were significantly different in both qTGW2b NILs and qGL9 NILs. Our results lay the foundation for the cloning of qTGW2b and qGL9, and provide genetic materials for the improvement of rice yield and quality. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-022-01328-2.

6.
Int J Mol Sci ; 23(18)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36142555

RESUMO

Salicylic acid (SA) is a stress hormone synthesized in phenylalanine ammonia-lyase (PAL) and the branching acid pathway. SA has two interconvertible forms in plants: SAG (SA O-ß-glucoside) and SA (free form). The molecular mechanism of conversion of SA to SAG had been reported previously. However, which genes regulate SAG to SA remained unknown. Here, we report a cytoplasmic ß-glucosidase (ß-Glu) which participates in the SA pathway and is involved in the brown hull pigmentation in rice grain. In the current study, an EMS-generated mutant brown hull 1 (bh1) displayed decreased contents of SA in hulls, a lower photosynthesis rate, and high-temperature sensitivity compared to the wild type (WT). A plaque-like phenotype (brown pigmentation) was present on the hulls of bh1, which causes a significant decrease in the seed setting rate. Genetic analysis revealed a mutation in LOC_Os01g67220, which encodes a cytoplasmic Os1ßGlu4. The knock-out lines displayed the phenotype of brown pigmentation on hulls and decreased seed setting rate comparable with bh1. Overexpression and complementation lines of Os1ßGlu4 restored the phenotype of hulls and normal seed setting rate comparable with WT. Subcellular localization revealed that the protein of Os1ßGlu4 was localized in the cytoplasm. In contrast to WT, bh1 could not hydrolyze SAG into SA in vivo. Together, our results revealed the novel role of Os1ßGlu4 in the accumulation of flavonoids in hulls by regulating the level of free SA in the cellular pool.


Assuntos
Celulases , Oryza , Celulases/metabolismo , Flavonoides , Regulação da Expressão Gênica de Plantas , Glucosidases/metabolismo , Glucosídeos , Hormônios , Oryza/genética , Oryza/metabolismo , Fenilalanina Amônia-Liase/metabolismo , Pigmentação/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Salicilatos , Ácido Salicílico/metabolismo
7.
Mol Breed ; 41(11): 68, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37309362

RESUMO

Chalkiness is one of the key determinants of rice quality and is a highly undesirable trait for breeding and marketing. In this study, qWCR7, a major quantitative trait locus (QTL) of white-core rate (WCR), was genetically validated using a BC3F2 segregation population and further fine mapped using a near isogenic line (NIL) population, of which both were derived from a cross between the donor parent DL208 and the recurrent parent ZS97. qWCR7 was finally narrowed to a genomic interval of ~ 68 kb, containing seven annotated genes. Among those, two genes displayed markedly different expression levels in endosperm of NILs. Transcriptome analysis showed that the synthesis and accumulation of metabolites played a key role in chalkiness formation. The contents of storage components and expression levels of related genes were detected, suggesting that starch and storage protein were closely related to white-core trait. Our findings have laid the foundation of map-based cloning of qWCR7, which may have potential value in quality improvement during rice breeding. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-021-01260-x.

8.
J Integr Plant Biol ; 63(5): 878-888, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32886450

RESUMO

Appearance and taste are important factors in rice (Oryza sativa) grain quality. Here, we investigated the taste scores and related eating-quality traits of 533 diverse cultivars to assess the relationships between-and genetic basis of-rice taste and eating-quality. A genome-wide association study highlighted the Wx gene as the major factor underlying variation in taste and eating quality. Notably, a novel waxy (Wx) allele, Wxla , which combined two mutations from Wxb and Wxin , exhibited a unique phenotype. Reduced GBSSI activity conferred Wxla rice with both a transparent appearance and good eating quality. Haplotype analysis revealed that Wxla was derived from intragenic recombination. In fact, the recombination rate at the Wx locus was estimated to be 3.34 kb/cM, which was about 75-fold higher than the genome-wide mean, indicating that intragenic recombination is a major force driving diversity at the Wx locus. Based on our results, we propose a new network for Wx evolution, noting that new Wx alleles could easily be generated by crossing genotypes with different Wx alleles. This study thus provides insights into the evolution of the Wx locus and facilitates molecular breeding for quality in rice.


Assuntos
Oryza/genética , Proteínas de Plantas/metabolismo , Alelos , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Estudo de Associação Genômica Ampla , Proteínas de Plantas/genética
9.
Inflamm Res ; 69(10): 989-999, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32770320

RESUMO

BACKGROUND: Oral lichen planus (OLP) is a T-cell-mediated inflammatory disease with a risk of malignant transformation. Although the etiology of OLP is still uncertain, growing evidence suggests that oral microbiota, antigen-specific, and non-specific mechanisms are involved in the pathogenesis of OLP. Antigen-specific mechanisms include antigen presentation, T-cell activation, nuclear factor-kappa B signaling pathway, and cytokine secretion, while non-specific mechanisms consist of matrix metalloproteinases (MMP)-9 upregulation, psychological pressure, oxidative damage, aberrant expression of microRNAs (miRNAs), and autophagy. Till now, there is no cure for OLP, and the main purpose of OLP therapy is symptomatic control. FINDING: Seafood and its derivative omega-3 polyunsaturated fatty acids (n-3 PUFAs) can suppress antigen presentation, T-cell activation, and nuclear factor-kappa B signaling pathway, modulate the overexpressed inflammatory cytokines, inhibit the expression of MMP-9, as well as regulate the expression of miRNAs and autophagy. And they are possible agents for ameliorating psychological disorder and oxidative damage. Moreover, n-3 PUFAs supplementation has a beneficial effect on preventing tumorigenesis. CONCLUSION: n-3 PUFAs consumption may provide a non-toxic, inexpensive administration for OLP.


Assuntos
Ácidos Graxos Ômega-3/uso terapêutico , Líquen Plano Bucal/dietoterapia , Animais , Antígenos/imunologia , Humanos , Líquen Plano Bucal/imunologia , Líquen Plano Bucal/microbiologia , Microbiota , Neoplasias Bucais/prevenção & controle
10.
Plant Biotechnol J ; 17(11): 2211-2222, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31004558

RESUMO

Combining ability is a measure for selecting elite parents and predicting hybrid performance in plant breeding. However, the genetic basis of combining ability remains unclear and a global view of combining ability from diverse mating designs is lacking. We developed a North Carolina II (NCII) population of 96 Oryza sativa and four male sterile lines to identify parents of greatest value for hybrid rice production. Statistical analyses indicated that general combining ability (GCA) and specific combining ability (SCA) contributed variously to different agronomic traits. In a genome-wide association study (GWAS) of agronomic traits, GCA and SCA, we identified 34 significant associations (P < 2.39 × 10-7 ). The superior alleles of GCA loci (Ghd8, GS3 and qSSR4) accumulated in parental lines with high GCA and explained 30.03% of GCA variance in grain yield, indicating that molecular breeding of high GCA parental lines is feasible. The distinct distributions of these QTLs contributed to the differentiation of parental GCA in subpopulations. GWAS of SCA identified 12 more loci that showed dominance on corresponding agronomic traits. We conclude that the accumulation of superior GCA and SCA alleles is an important contributor to heterosis and QTLs that greatly contributed to combining ability in our study would accelerate the identification of elite inbred lines and breeding of super hybrids.


Assuntos
Vigor Híbrido , Oryza/genética , Melhoramento Vegetal , Locos de Características Quantitativas , Estudos de Associação Genética , Fenótipo
11.
Medicine (Baltimore) ; 102(46): e35355, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37986345

RESUMO

Osteoarthritis (OA) is a common degenerative joint disease and is closely associated with chronic, low-grade inflammation. Regulating ferroptosis by targeting ferroptosis-related genes may be a fast and effective way to delay the degeneration of OA. However, the molecular mechanisms and gene targets related to ferroptosis in OA are still unclear. Data of OA samples from 3 gene expression omnibus (GEO) datasets were combined to identify differentially expressed genes (DEGs). Ferroptosis-related genes (FRGs) retrieved by the Ferroptosis database were intersected with DEGs, and the intersected hub genes were used for functional enrichment analysis. The feature genes were obtained from the least absolute shrinkage and selection operator (LASSO) algorithm, support vector machine recursive feature elimination (SVM-RFE) algorithm, and random forest (RF) algorithm. Single sample gene set enrichment analysis (ssGSEA) was used to compare immune infiltration between OA patients and normal controls, and the correlation between feature genes and immune cells was analyzed. The expression levels of feature genes were confirmed by RT-PCR. In addition, to explore the applicability of these genes, we extended the bioinformatics analysis of these feature genes to cancer. Finally, 4 feature genes, GABARAPL1, TNFAIP3, ARNTL, and JUN, were confirmed in OA. Theirs expression level were validated by RT-PCR. ROC curves of the 4 genes exhibit excellent diagnostic efficiency for OA, suggesting that the 4 genes were associated with the pathogenesis of OA. Another GEO dataset validated this result. Further analysis revealed that the 4 feature genes were all closely related to the immune infiltration cells in OA. Additionally, results of prognosis analysis indicated that JUN might be a promising therapeutic target for cancer. GABARAPL1, TNFAIP3, ARNTL, and JUN may be predicted biomarkers for OA. The feature genes and association between feature genes and immune infiltration may provide potential biomarkers for OA prediction along with the better assessment of the disease.


Assuntos
Neoplasias , Osteoartrite , Humanos , Fatores de Transcrição ARNTL , Biologia Computacional , Inflamação , Aprendizado de Máquina , Biomarcadores , Osteoartrite/genética
12.
Heliyon ; 9(10): e20163, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37771529

RESUMO

Osteoarthritis (OA) is associated with ferroptosis, a newly discovered form of programmed cell death associated with lipid peroxidation. Curcumin, the main monomer component in turmeric rhizomes, possesses antioxidant and anti-ferroptosis properties, but its effect on ferroptosis in chondrocytes of OA is unknown. This study aimed to investigate the protective effect and potential mechanism of curcumin on chondrocytes induced by erastin, a ferroptosis inducer. CCK-8 assays were used to assess cell viability in mouse primary chondrocytes treated with 3.33 µM erastin alone or in combination with different doses of curcumin. Various parameters were detected, including LDH, SOD, GSH-PX, MDA, ROS and Fe2+ contents. The ferroptosis-related proteins, such as SLC7A11, GPX4, TFR1, ACSL4, and FTH1, were examined using immunofluorescence and western blotting. Nrf2 was knocked down using siRNA to explore the molecular mechanism through which curcumin protects chondrocytes from erastin-induced ferroptosis. In a mouse model of knee ferroptosis induced by intracavity injection of 10 µL erastin (5 mg/mL), HE staining, Safranin O-Fast Green staining, and immunohistochemistry were employed to evaluate articular cartilage injury. The results demonstrated that erastin significantly suppressed the expression of SOD, GSH-PX, SLC7A11, GPX4, and FTH1 while upregulating the levels of LDH, MDA, ROS, ACSL4, and TFR1 in chondrocytes. Moreover, erastin-induced chondrocyte ferroptosis, lipid ROS, and Fe2+ production were reversed by curcumin. Additionally, curcumin significantly upregulated the expression level of the Nrf2 gene and protein. Silencing Nrf2 reversed the protective effect of curcumin on erastin-induced chondrocyte ferroptosis. In animal experiments, silencing Nrf2 counteracted the impact and damage of curcumin on erastin-induced ferroptosis of cartilage tissue in vivo, leading to significant inhibition of OA progression. Taken together, these findings suggest that curcumin can inhibit chondrocyte ferroptosis by activating the Nrf2 signaling pathway, providing further insight into the regulatory mechanism of curcumin in OA and supporting its potential therapeutic use in OA treatment.

13.
Rice (N Y) ; 16(1): 57, 2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38071259

RESUMO

Chlorophyll degradation is an important physiological process and is essential for plant growth and development. However, how chlorophyll degradation is controlled at the cellular and molecular level remains largely elusive. Pectin is a main component of the primary cell wall, and polygalacturonases (PGs) is a group of pectin-hydrolases that cleaves the pectin backbone and release oligogalacturonide. Whether and how PGs affect chlorophyll degradation metabolism and its association with ethylene (ETH) have not been reported before. Here, we report a novel function of PG in a mutant 'high chlorophyll content1' hcc1, which displayed a decrease in growth and yield. Our morphological, biochemical and genetic analyses of hcc1, knockout lines and complementation lines confirm the function of HCC1 in chlorophyll degradation. In hcc1, the PG activity, ETH content and D-galacturonic acid (D-GA) was significantly decreased and showed an increase in the thickness of the cell wall. Exogenous application of ETH and D-GA can increase ETH content and induce the expression of HCC1, which further can successfully induce the chlorophyll degradation in hcc1. Together, our data demonstrated a novel function of HCC1 in chlorophyll degradation via the ETH pathway.

14.
Front Plant Sci ; 13: 901541, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35937336

RESUMO

Quality is a complex trait that is not only the key determinant of the market value of the rice grain, but is also a major constraint in rice breeding. It is influenced by both genetic and environmental factors. However, the combined effects of genotypes and environmental factors on rice grain quality remain unclear. In this study, we used a three-factor experimental design to examine the grain quality of different Wx genotypes grown under different nitrogen fertilization and temperature conditions during grain development. We found that the three factors contributed differently to taste, appearance, and nutritional quality. Increased Wx function and nitrogen fertilization significantly reduced eating quality, whereas high temperature (HT) had almost no effect. The main effects of temperature on appearance quality and moderate Wx function at low temperatures (LTs) contributed to better appearance, and higher nitrogen fertilization promoted appearance at HTs. With regard to nutritional quality, Wx alleles promoted amylose content (AC) as well as starch-lipids content (SLC); nitrogen fertilization increased storage protein content (PC); and higher temperature increased lipid content but decreased the PC. This study helps to broaden the understanding of the major factors that affect the quality of rice and provides constructive messages for rice quality improvement and the cultivation of high-quality rice varieties.

15.
Mol Plant ; 14(3): 456-469, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33307246

RESUMO

Rice grain oil is a valuable nutrient source. However, the genetic basis of oil biosynthesis in rice grains remains unclear. In this study, we performed a genome-wide association study on oil composition and oil concentration in a diverse panel of 533 cultivated rice accessions. High variation for 11 oil-related traits was observed, and the oil composition of rice grains showed differentiation among the subpopulations. We identified 46 loci that are significantly associated with grain oil concentration or composition, 16 of which were detected in three recombinant inbred line populations. Twenty-six candidate genes encoding enzymes involved in oil metabolism were identified from these 46 loci, four of which (PAL6, LIN6, MYR2, and ARA6) were found to contribute to natural variation in oil composition and to show differentiation among the subpopulations. Interestingly, population genetic analyses revealed that specific haplotypes of PAL6 and LIN6 have been selected in japonica rice. Based on these results, we propose a possible oil biosynthetic pathway in rice grains. Collectively, our results provide new insights into the genetic basis of oil biosynthesis in rice grains and can facilitate marker-based breeding of rice varieties with enhanced oil and grain quality.


Assuntos
Oryza/genética , Locos de Características Quantitativas/genética , Mapeamento Cromossômico , Grão Comestível/metabolismo , Estudo de Associação Genômica Ampla/métodos
16.
Rice (N Y) ; 13(1): 11, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-32040640

RESUMO

BACKGROUND: Wild-abortive cytoplasmic male sterility (CMS-WA) and Honglian CMS (CMS-HL) are the two main CMS types utilized in production of three-line hybrid rice in xian/indica (XI) rice. Dissection of the genetic basis of fertility restoration of CMS-WA and CMS-HL in the core germplasm population would provide valuable gene and material resources for development of three-line hybrid combinations. RESULTS: In this study, two F1 populations with CMS-WA and CMS-HL background respectively were developed using 337 XI and aus accessions being paternal parents. Genome-wide association studies on three fertility-related traits of the two populations for two consecutive years revealed that both fertility restoration of CMS-WA and CMS-HL were controlled by a major locus and several minor loci respectively. The major locus for fertility restoration of CMS-WA was co-located with Rf4, and that for fertility restoration of CMS-HL was co-located with Rf5, which are cloned major restorer of fertility (Rf) genes. Furthermore, haplotype analysis of Rf4, Rf5 and Rf6, the three cloned major Rf genes, were conducted using the 337 paternal accessions. Four main haplotypes were identified for Rf4, and displayed different subgroup preferences. Two main haplotypes were identified for Rf5, and the functional type was carried by the majority of paternal accessions. In addition, eight haplotypes were identified for Rf6. CONCLUSIONS: Haplotype analysis of three Rf genes, Rf4, Rf5 and Rf6, could provide valuable sequence variations that can be utilized in marker-aided selection of corresponding genes in rice breeding. Meanwhile, fertility evaluation of 337 accessions under the background of CMS could provide material resources for development of maintainer lines and restorers.

17.
Artif Cells Nanomed Biotechnol ; 47(1): 1766-1771, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31066587

RESUMO

BACKGROUND: Understanding the mechanism of chondrocytes degeneration could provide a new potential therapeutic idea for rheumatoid arthritis (RA) treatment. MicroRNA-27b-3p (miR-27b-3p) has been shown to regulate a variety of cell behaviors in various cell types. However, the role of miR-27b-3p in RA remains unknown. MATERIALS AND METHODS: Expression of miR-27b-3p and HIPK2 in cartilage tissues and chondrocytes was characterized using qRT-PCR and Western blot. MiR-27b-3p was overexpressed or suppressed in chondrocytes to observe the potential role of miR-27b-3p. RESULTS: We found declined miR-27b-3p and elevated HIPK2 in RA tissues and cells using qRT-PCR. Dual-luciferase reporter assay validated HIPK2 is a direct target of miR-27b-3p, confirmed by Western blot results. Pearson correlation presented that there was a significantly negative correlation between miR-27b-3p and HIPK2 mRNA. Overexpression of miR-27b-3p significantly reduced the expression of pro-apoptotic protein c-caspase3 and increased the expression of anti-apoptotic Bcl-2; however, downregulation of miR-27b-3p has a significant effect of inducing apoptosis. Furthermore, overexpression of miR-27b-3p combined with recombinant HIPK2 protein showed the inhibitory effect of miR-27b-3p was abolished by HIPK2. CONCLUSION: We found declined miR-27b-3p and elevated HIPK2 in RA tissues and cells. Further in vitro studies demonstrated that miR-27b might inhibit chondrocyte apoptosis and thus attenuate RA development by directly inhibiting HIPK2 expression.


Assuntos
Apoptose/genética , Artrite Reumatoide/genética , Artrite Reumatoide/patologia , Proteínas de Transporte/genética , Condrócitos/patologia , MicroRNAs/genética , Proteínas Serina-Treonina Quinases/genética , Animais , Sequência de Bases , Proliferação de Células/genética , Progressão da Doença , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL
18.
Rice (N Y) ; 10(1): 39, 2017 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-28853048

RESUMO

BACKGROUND: Combining ability is a measure for selecting elite parents that make the highest contributions to hybrid performance. However, the genetic bases of combining ability and how they contributed to heterosis is seldomly known. RESULTS: We constructed a both NCII and NCIII population derived from an indica-japonica cross to study the relationship among parental performance, combining ability and hybrid performance of 11 agronomic traits. Among them, specific combining ability is more important to grain yield than parental performance and general combining ability. We performed linkage analyses to phenotypic values and combining ability of all 11 traits in Doubled haploid lines and its two backcross populations and identified 108 QTLs in total. Among these QTLs, four known loci, Sd1, Ghd7, Ghd8 and DEP1 contribute a lot to GCA effects of agronomic traits except grain yield and seed setting rate. Three QTLs, Ghd8, S5 and qS12, contribute a lot to SCA effects of grain yield and present overdominace. CONCLUSIONS: Our study provides insights into the genetic bases of combining ability and heterosis and will promote the improvements of indica-japonica hybrid breeding.

19.
PLoS One ; 12(11): e0187553, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29145412

RESUMO

Grain shape is a key factor that influences both the appearance quality and grain yield of rice. To clarify the genetic basis of grain shape, an advanced backcross population was developed from the cross of a slender indica variety Jin23B and a round japonica variety QingGuAi, and a total of 10 quantitative trait loci (QTLs) for grain shape were detected over 2 years. Three QTLs, qGW1, qGS3 and qGS7 have large effects on grain shape and were detected in both years. To further validate their effects, the BC4F2 populations of the three QTLs were constructed. The alleles from QingGuAi of qGW1 and qGS7 both greatly increase grain width and the alleles from Jin23B of qGS3 greatly increase grain length. The allele variations of the three QTLs lead to the totally different grain shape of the two rice varieties. Our study provides insights into the genetic bases of grain shape and will promote the improvements of grain quality and yield in rice.


Assuntos
Cruzamentos Genéticos , Oryza/genética , Locos de Características Quantitativas , Genes de Plantas
20.
Mol Plant ; 10(4): 634-644, 2017 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-28110091

RESUMO

Stigma exsertion, a key determinant of the rice mating system, greatly contributes to the application of heterosis in rice. Although a few quantitative trait loci associated with stigma exsertion have been fine mapped or cloned, the underlying genetic architecture remains unclear. We performed a genome-wide association study on stigma exsertion and related floral traits using 6.5 million SNPs characterized in 533 diverse accessions of Oryza sativa. We identified 23 genomic loci that are significantly associated with stigma exsertion and related traits, three of which are co-localized with three major grain size genes GS3, GW5, and GW2. Further analyses indicated that these three genes affected the stigma exsertion by controlling the size and shape of the spikelet and stigma. Combinations of GS3 and GW5 largely defined the levels of stigma exsertion and related traits. Selections of these two genes resulted in specific distributions of floral traits among subpopulations of O. sativa. The low stigma exsertion combination gw5GS3 existed in half of the cultivated rice varieties; therefore, introducing the GW5gs3 combination into male sterile lines is of high potential for improving the seed production of hybrid rice.


Assuntos
Flores/genética , Estudo de Associação Genômica Ampla/métodos , Oryza/genética , Cromossomos de Plantas/genética , Flores/metabolismo , Oryza/metabolismo , Locos de Características Quantitativas/genética , Sementes/genética , Sementes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA