Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell ; 34(2): 802-817, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-34875081

RESUMO

Gene duplication is increasingly recognized as an important mechanism for the origination of new genes, as revealed by comparative genomic analysis. However, how new duplicate genes contribute to phenotypic evolution remains largely unknown, especially in plants. Here, we identified the new gene EXOV, derived from a partial gene duplication of its parental gene EXOVL in Arabidopsis thaliana. EXOV is a species-specific gene that originated within the last 3.5 million years and shows strong signals of positive selection. Unexpectedly, RNA-sequencing analyses revealed that, despite its young age, EXOV has acquired many novel direct and indirect interactions in which the parental gene does not engage. This observation is consistent with the high, selection-driven substitution rate of its encoded protein, in contrast to the slowly evolving EXOVL, suggesting an important role for EXOV in phenotypic evolution. We observed significant differentiation of morphological changes for all phenotypes assessed in genome-edited and T-DNA insertional single mutants and in double T-DNA insertion mutants in EXOV and EXOVL. We discovered a substantial divergence of phenotypic effects by principal component analyses, suggesting neofunctionalization of the new gene. These results reveal a young gene that plays critical roles in biological processes that underlie morphological evolution in A. thaliana.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Duplicação Gênica , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cromossomos de Plantas , Regulação da Expressão Gênica de Plantas , Genes Duplicados , Genética Populacional , Mutação , Fenótipo , Plantas Geneticamente Modificadas , Análise de Componente Principal , Seleção Genética
2.
PLoS Genet ; 17(2): e1009396, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33617535

RESUMO

How to respond to starvation determines fitness. One prominent behavioral response is increased locomotor activities upon starvation, also known as Starvation-Induced Hyperactivity (SIH). SIH is paradoxical as it promotes food seeking but also increases energy expenditure. Despite its importance in fitness, the genetic contributions to SIH as a behavioral trait remains unexplored. Here, we examined SIH in the Drosophila melanogaster Genetic Reference Panel (DGRP) and performed genome-wide association studies. We identified 23 significant loci, corresponding to 14 genes, significantly associated with SIH in adult Drosophila. Gene enrichment analyses indicated that genes encoding ion channels and mRNA binding proteins (RBPs) were most enriched in SIH. We are especially interested in RBPs because they provide a potential mechanism to quickly change protein expression in response to environmental challenges. Using RNA interference, we validated the role of syp in regulating SIH. syp encodes Syncrip (Syp), an RBP. While ubiquitous knockdown of syp led to semi-lethality in adult flies, adult flies with neuron-specific syp knockdown were viable and exhibited decreased SIH. Using the Temporal and Regional Gene Expression Targeting (TARGET) system, we further confirmed the role of Syp in adult neurons in regulating SIH. To determine how syp is regulated by starvation, we performed RNA-seq using the heads of flies maintained under either food or starvation conditions. RNA-seq analyses revealed that syp was alternatively spliced under starvation while its expression level was unchanged. We further generated an alternatively-spliced-exon-specific knockout (KO) line and found that KO flies showed reduced SIH. Together, this study demonstrates a significant genetic contribution to SIH as a behavioral trait, identifies syp as a SIH gene, and highlights the significance of RBPs and post-transcriptional processes in the brain in regulating behavioral responses to starvation.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Metabolismo Energético/genética , Estudo de Associação Genômica Ampla/métodos , Proteínas de Ligação a RNA/genética , Inanição , Alelos , Processamento Alternativo , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Drosophila melanogaster/fisiologia , Regulação da Expressão Gênica , Frequência do Gene , Locomoção/genética , Masculino , Neurônios/citologia , Neurônios/metabolismo , Polimorfismo de Nucleotídeo Único , Interferência de RNA , Proteínas de Ligação a RNA/metabolismo , RNA-Seq/métodos
3.
PLoS Genet ; 17(7): e1009654, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34242211

RESUMO

It is a conventionally held dogma that the genetic basis underlying development is conserved in a long evolutionary time scale. Ample experiments based on mutational, biochemical, functional, and complementary knockdown/knockout approaches have revealed the unexpectedly important role of recently evolved new genes in the development of Drosophila. The recent progress in the genome-wide experimental testing of gene effects and improvements in the computational identification of new genes (< 40 million years ago, Mya) open the door to investigate the evolution of gene essentiality with a phylogenetically high resolution. These advancements also raised interesting issues in techniques and concepts related to phenotypic effect analyses of genes, particularly of those that recently originated. Here we reported our analyses of these issues, including reproducibility and efficiency of knockdown experiment and difference between RNAi libraries in the knockdown efficiency and testing of phenotypic effects. We further analyzed a large data from knockdowns of 11,354 genes (~75% of the Drosophila melanogaster total genes), including 702 new genes (~66% of the species total new genes that aged < 40 Mya), revealing a similarly high proportion (~32.2%) of essential genes that originated in various Sophophora subgenus lineages and distant ancestors beyond the Drosophila genus. The transcriptional compensation effect from CRISPR knockout were detected for highly similar duplicate copies. Knockout of a few young genes detected analogous essentiality in various functions in development. Taken together, our experimental and computational analyses provide valuable data for detection of phenotypic effects of genes in general and further strong evidence for the concept that new genes in Drosophila quickly evolved essential functions in viability during development.


Assuntos
Evolução Molecular , Duplicação Gênica/genética , Genes Essenciais/genética , Animais , Evolução Biológica , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Técnicas de Silenciamento de Genes/métodos , Genômica , Genótipo , Modelos Genéticos , Mutação , Fenótipo , Filogenia , Reprodutibilidade dos Testes
4.
Mol Biol Evol ; 39(1)2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34626117

RESUMO

It is conventionally assumed that conserved pathways evolve slowly with little participation of gene evolution. Nevertheless, it has been recently observed that young genes can take over fundamental functions in essential biological processes, for example, development and reproduction. It is unclear how newly duplicated genes are integrated into ancestral networks and reshape the conserved pathways of important functions. Here, we investigated origination and function of two autosomal genes that evolved recently in Drosophila: Poseidon and Zeus, which were created by RNA-based duplications from the X-linked CAF40, a subunit of the conserved CCR4-NOT deadenylase complex involved in posttranscriptional and translational regulation. Knockdown and knockout assays show that the two genes quickly evolved critically important functions in viability and male fertility. Moreover, our transcriptome analysis demonstrates that the three genes have a broad and distinct effect in the expression of hundreds of genes, with almost half of the differentially expressed genes being perturbed exclusively by one paralog, but not the others. Co-immunoprecipitation and tethering assays show that the CAF40 paralog Poseidon maintains the ability to interact with the CCR4-NOT deadenylase complex and might act in posttranscriptional mRNA regulation. The rapid gene evolution in the ancient posttranscriptional and translational regulatory system may be driven by evolution of sex chromosomes to compensate for the meiotic X chromosomal inactivation (MXCI) in Drosophila.


Assuntos
Proteínas de Drosophila , Inativação do Cromossomo X , Animais , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Evolução Molecular , Genes Ligados ao Cromossomo X , Masculino
5.
Clin Genet ; 103(1): 79-86, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36148623

RESUMO

Hypoplastic left heart syndrome (HLHS) is a rare but fatal birth defect in which the left side of the heart is underdeveloped. HLHS accounts for 2% to 4% of congenital heart anomalies. Whole genome sequencing (WGS) was conducted for a family trio consisting of a proband and his parents. A homozygous rare variant was detected in the PTPRB (Protein Tyrosine Phosphatase Receptor Type B) gene of the proband by functional annotation and co-segregation analysis. Sanger sequencing was used to confirm genotypes of the variant. The in silico prediction tools, including Mutation Taster, SpliceAI, and CADD, were used to predict the impact of the mutation. The allele frequencies across populations were compared based on multiple databases, including "1000 genomes" and "gnomAD". We used two vectors (pcMINI and pcDNA3.1) to generate a minigene construct to validate the mutational effect at the transcriptional level. Family-based WGS analyses showed that only a homozygous splice acceptor variant (NC_000012.12: g.70636068T>G, NM_001109754.4: c.56-2A>C, NG_029940.2: g.6373A>C) at the exon-intron border of PTPRB gene associates with HLHS. This variant is also within the region with the enhancer activity based on UCSC genome annotation. Genotyping and Sanger sequencing revealed that the proband's parents are heterozygous for this variant. Evolutionary conservation analysis revealed that the site (NC_000012.12: g.70636068) is extremely conserved across species, supporting the evolutionary functional constraints of the ancestral wild type (T). In silico tools universally predicted a deleterious or disease-causing impact of the mutation from T to G. The mutation was not found in the 1000 genomes and gnomAD databases, which indicates that this mutation is very rare in most human populations. A splicing assay indicated that the mutated minigene caused aberrant splicing of mRNA, in which a 3 bp missing in the second exon resulted in the deletion of one amino acid (NP_001103224.1:p.Glu19del) compared to the normal protein of PRPTB (also the VE-PTP). Structure prediction revealed that the deletion occurred within the C-region of the signal peptide of VE-PTP, suggesting signal peptide-related defects as a potential mechanism for the HLHS cellular pathogeny. We report a rare homozygous variant with splicing error in PTPRB associated with HLHS. Previous model species studies revealed conserved functions of PTPRB in cardiovascular and heart development in mice and zebrafish. Our study is the first report to show the association between PTPRB and HLHS in humans.


Assuntos
Síndrome do Coração Esquerdo Hipoplásico , Humanos , Camundongos , Animais , Síndrome do Coração Esquerdo Hipoplásico/genética , Peixe-Zebra , Família , Pais , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores
6.
New Phytol ; 225(1): 530-545, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31407340

RESUMO

New genes often drive the evolution of gene interaction networks. In Brassica napus, the widely used genic male sterile breeding system 7365ABC is controlled by two young genes, Bnams4b and BnaMs3. However, the interaction mechanism of these two young genes remains unclear. Here, we confirmed that Bnams4b interacts with the nuclear localised E3 ligase BRUTUS (BTS). Ectopic expression of AtBRUTUS (AtBTS) and comparison between Bnams4b -transgenic Arabidopsis and bts mutants suggested that Bnams4b may drive translocation of BTS to cause various toxic defects. BnaMs3 gained an exclusive interaction with the plastid outer-membrane translocon Toc33 compared with Bnams3 and AtTic40, and specifically compensated for the toxic effects of Bnams4b . Heat shock treatment also rescued the sterile phenotype, and high temperature suppressed the interaction between Bnams4b and BTS in yeast. Furthermore, the ubiquitin system and TOC (translocon at the outer envelope membrane of chloroplasts) component accumulation were affected in Bnams4b -transgenic Arabidopsis plants. Taken together, these results indicate that new chimeric Bnams4b carries BTS from nucleus to chloroplast, which may disrupt the normal ubiquitin-proteasome system to cause toxic effects, and these defects can be compensated by BnaMs3-Toc33 interaction or environmental heat shock. It reveals a scenario in which two population-specific coevolved young genes reshape a novel interaction network in plants.


Assuntos
Brassica napus/genética , Epistasia Genética , Redes Reguladoras de Genes , Genes de Plantas , Arabidopsis/embriologia , Arabidopsis/genética , Brassica napus/embriologia , Fertilidade , Regulação da Expressão Gênica de Plantas , Deficiências de Ferro , Modelos Biológicos , Mutação/genética , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Proteoma/metabolismo , Temperatura , Transcriptoma/genética
7.
Plant Cell ; 28(9): 2060-2078, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27559024

RESUMO

Chimeric genes contribute to the evolution of diverse functions in plants and animals. However, new chimeric genes also increase the risk of developmental defects. Here, we show that the chimeric gene Brassica napus male sterile 4 (Bnams4b ) is responsible for genic male sterility in the widely used canola line 7365A (Bnams3 ms3ms4bms4b ). Bnams4b originated via exon shuffling ∼4.6 million years ago. It causes defects in the normal functions of plastids and induces aborted anther formation and/or albino leaves and buds. Evidence of the age of the mutation, its tissue expression pattern, and its sublocalization indicated that it coevolved with BnaC9.Tic40 (BnaMs3). In Arabidopsis thaliana, Bnams4b results in complete male sterility that can be rescued by BnaC9.Tic40, suggesting that BnaC9.Tic40 might restore fertility through effects on protein level. Another suppressor gene, Bnams4a , rescues sterility by reducing the level of transcription of Bnams4b Our results suggest that Brassica plants have coevolved altered transcription patterns and neofunctionalization of duplicated genes that can block developmental defects resulting from detrimental chimeric genes.

8.
Plant Cell Physiol ; 57(9): 1972-84, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27388342

RESUMO

Tapetal programmed cell death (PCD) is essential in pollen grain development, and cysteine proteases are ubiquitous enzymes participating in plant PCD. Although the major papain-like cysteine proteases (PLCPs) have been investigated, the exact functions of many PLCPs are still poorly understood in PCD. Here, we identified a PLCP gene, BnaC.CP20.1, which was closely related to XP_013596648.1 from Brassica oleracea. Quantitative real-time PCR analysis revealed that BnaC.CP20.1 expression was down-regulated in male-sterile lines in oilseed rape, suggesting a connection between this gene and male sterility. BnaC.CP20.1 is especially active in the tapetum and microspores in Brassica napus from the uninucleate stage until formation of mature pollen grains during anther development. On expression of BnaC.CP20.1 prior to the tetrad stage, BnA9::BnaC.CP20.1 transgenic lines in Arabidopsis thaliana showed a male-sterile phenotype with shortened siliques containing fewer or no seeds by self-crossing. Scanning electron microscopy indicated that the reticulate exine was defective in aborted microspores. Callose degradation was delayed and microspores were not released from the tetrad in a timely fashion. Additionally, the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay indicated that BnaC.CP20.1 ectopic expression led to premature tapetal PCD. Transmission electron microscopy analyses further demonstrated that the pollen abortion was due to the absence of tectum connections to the bacula in the transgenic anthers. These findings suggest that timely expression of BnaC.CP20.1 is necessary for tapetal degeneration and pollen wall formation.


Assuntos
Arabidopsis/citologia , Arabidopsis/genética , Brassica napus/genética , Expressão Ectópica do Gene , Brassica napus/citologia , Morte Celular/genética , Flores/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Filogenia , Infertilidade das Plantas/genética , Plantas Geneticamente Modificadas/citologia , Pólen/citologia , Pólen/genética , Pólen/crescimento & desenvolvimento , Regiões Promotoras Genéticas
9.
Plant Cell Physiol ; 57(8): 1643-56, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27335346

RESUMO

Multienzyme associations localized to specific subcellular sites are involved in several critical functions in cellular metabolism, such as plant survival and reproduction. To date, few multienzyme complexes involved in male fertility have been examined in Brassica napus Here, we reported that in B. napus, the members of a multienzyme complex work in an interaction pattern different from that in Arabidopsis thaliana for sporopollenin biosynthesis. 7365A, a male-sterile mutant with a relatively smooth anther cuticle, was found to have a dramatic reduction in both cutin monomers and wax composition. Proteomic comparison between the mutant 7365A and wild-type 7365B showed down-regulation of three sporopollenin biosynthetic enzymes, namely BnPKSA, BnPKSB and BnTKPR; these enzymes were tightly co-expressed with BnACOS5. BnPKSA and BnPKSB showed similar expression patterns but distinct accumulation levels, suggesting that they had partially distinct functions during sporopollenin biosynthesis. In vitro and in vivo analyses demonstrated that BnPKSB directly interacted with BnPKSA and BnACOS5, but no such interactions were found in the present investigation for BnTKPR1. Interestingly, the interaction between PKSA and PKSB has not been discovered in Arabidopsis, which may indicate a new interaction representing an additional efficient regulation method in B. napus Taken together, we propose that BnPKSA and BnPKSB may comprise a heterodimer combined with BnACOS5, constituting a sporopollenin metabolon in tapetal cells that is related to male reproductive development in B. napus.


Assuntos
Brassica napus/enzimologia , Regulação da Expressão Gênica de Plantas , Complexos Multienzimáticos , Proteômica , Biopolímeros/biossíntese , Biopolímeros/genética , Brassica napus/genética , Brassica napus/crescimento & desenvolvimento , Brassica napus/ultraestrutura , Carotenoides/biossíntese , Carotenoides/genética , Regulação para Baixo , Flores/enzimologia , Flores/genética , Flores/crescimento & desenvolvimento , Flores/ultraestrutura , Lipídeos de Membrana/metabolismo , Modelos Biológicos , Mutação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Multimerização Proteica
10.
Plant Physiol ; 166(3): 1403-19, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25185122

RESUMO

Gene duplication followed by functional divergence in the event of polyploidization is a major contributor to evolutionary novelties. The Brassica genus evolved from a common ancestor after whole-genome triplication. Here, we studied the evolutionary and functional features of Brassica spp. homologs to Tic40 (for translocon at the inner membrane of chloroplasts with 40 kDa). Four Tic40 loci were identified in allotetraploid Brassica napus and two loci in each of three basic diploid Brassica spp. Although these Tic40 homologs share high sequence identities and similar expression patterns, they exhibit altered functional features. Complementation assays conducted on Arabidopsis thaliana tic40 and the B. napus male-sterile line 7365A suggested that all Brassica spp. Tic40 homologs retain an ancestral function similar to that of AtTic40, whereas BolC9.Tic40 in Brassica oleracea and its ortholog in B. napus, BnaC9.Tic40, in addition, evolved a novel function that can rescue the fertility of 7365A. A homologous chromosomal rearrangement placed bnac9.tic40 originating from the A genome (BraA10.Tic40) as an allele of BnaC9.Tic40 in the C genome, resulting in phenotypic variation for male sterility in the B. napus near-isogenic two-type line 7365AB. Assessment of the complementation activity of chimeric B. napus Tic40 domain-swapping constructs in 7365A suggested that amino acid replacements in the carboxyl terminus of BnaC9.Tic40 cause this functional divergence. The distribution of these amino acid replacements in 59 diverse Brassica spp. accessions demonstrated that the neofunctionalization of Tic40 is restricted to B. oleracea and its derivatives and thus occurred after the divergence of the Brassica spp. A, B, and C genomes.


Assuntos
Brassica/genética , Duplicação Gênica , Genes de Plantas , Proteínas de Arabidopsis/genética , Brassica/fisiologia , Brassica napus/genética , Brassica napus/fisiologia , Diploide , Evolução Molecular , Fertilidade/genética , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Genoma de Planta , Proteínas de Membrana/genética , Chaperonas Moleculares/genética , Filogenia , Plantas Geneticamente Modificadas
11.
Genome Biol Evol ; 16(6)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38753069

RESUMO

Recent studies in the rice genome-wide have established that de novo genes, evolving from noncoding sequences, enhance protein diversity through a stepwise process. However, the pattern and rate of their evolution in protein structure over time remain unclear. Here, we addressed these issues within a surprisingly short evolutionary timescale (<1 million years for 97% of Oryza de novo genes) with comparative approaches to gene duplicates. We found that de novo genes evolve faster than gene duplicates in the intrinsically disordered regions (such as random coils), secondary structure elements (such as α helix and ß strand), hydrophobicity, and molecular recognition features. In de novo proteins, specifically, we observed an 8% to 14% decay in random coils and intrinsically disordered region lengths and a 2.3% to 6.5% increase in structured elements, hydrophobicity, and molecular recognition features, per million years on average. These patterns of structural evolution align with changes in amino acid composition over time as well. We also revealed higher positive charges but smaller molecular weights for de novo proteins than duplicates. Tertiary structure predictions showed that most de novo proteins, though not typically well folded on their own, readily form low-energy and compact complexes with other proteins facilitated by extensive residue contacts and conformational flexibility, suggesting a faster-binding scenario in de novo proteins to promote interaction. These analyses illuminate a rapid evolution of protein structure in de novo genes in rice genomes, originating from noncoding sequences, highlighting their quick transformation into active, protein complex-forming components within a remarkably short evolutionary timeframe.


Assuntos
Evolução Molecular , Oryza , Proteínas de Plantas , Oryza/genética , Proteínas de Plantas/genética , Proteínas de Plantas/química , Duplicação Gênica , Interações Hidrofóbicas e Hidrofílicas
12.
Genome Biol Evol ; 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37170918

RESUMO

T cells are a type of white blood cell that play a critical role in the immune response against foreign pathogens through a process called T Cell Adaptive Immunity (TCAI). However, the evolution of the genes and nucleotide sequences involved in TCAI is not well understood. To investigate this, we performed comparative studies of gene annotations and genome assemblies of 28 vertebrate species and identified sets of human genes that are involved in TCAI, carcinogenesis, and ageing. We found that these gene sets share interaction pathways which may have contributed to the evolution of longevity in the vertebrate lineage leading to humans. Our human gene age dating analyses revealed that there was rapid origination of genes with TCAI-related functions prior to the Cretaceous eutherian radiation and these new genes mainly encode negative regulators. We identified no new TCAI-related genes after the divergence of placental mammals, but we did detect an extensive number of amino acid substitutions under strong positive selection in recently evolved human immunity genes suggesting they are co-evolving with adaptive immunity. More specifically, we observed that antigen processing and presentation and checkpoint genes are significantly enriched among new genes evolving under positive selection. These observations reveal an evolutionary process of T Cell Adaptive Immunity that were associated with rapid gene duplication in the early stages of vertebrates and subsequent sequence changes in TCAI-related genes. These processes together suggest an early genetic construction of the vertebrate immune system and subsequent molecular adaptation to diverse antigens.

13.
bioRxiv ; 2023 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-38045239

RESUMO

New genes (or young genes) are structural novelties pivotal in mammalian evolution. Their phenotypic impacts on humans, however, remain elusive due to the technical and ethical complexities in functional studies. Through combining gene age dating with Mendelian disease phenotyping, our research reveals a steady integration of new genes with biomedical phenotypes into the human genome over macroevolutionary timescales (~0.07% per million years). Despite this stable pace, we observe distinct patterns in phenotypic enrichment, pleiotropy, and selective pressures shaped by different gene ages. Notably, young genes show significant enrichment in the male reproductive system, indicating strong sexual selection. Young genes also exhibit functions in tissues and systems potentially linked to human phenotypic innovations, such as increased brain size, musculoskeletal phenotypes, and color vision. Our findings further reveal increasing levels of pleiotropy over evolutionary time, which accompanies stronger selective constraints. We propose a "pleiotropy-barrier" model that delineates different potentials for phenotypic innovation between young and older genes subject to natural selection. Our study demonstrates that evolutionary new genes are critical in influencing human reproductive evolution and adaptive phenotypic innovations driven by sexual and natural selection, with low pleiotropy as a selective advantage.

14.
Plant J ; 68(3): 532-45, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21756273

RESUMO

Here, we describe the characteristics of a Brassica napus male sterile mutant 7365A with loss of the BnMs3 gene, which exhibits abnormal enlargement of the tapetal cells during meiosis. Later in development, the absence of the BnMs3 gene in the mutant results in a loss of the secretory function of the tapetum, as suggested by abortive callose dissolution and retarded tapetal degradation. The BnaC.Tic40 gene (equivalent to BnMs3) was isolated by a map-based cloning approach and was confirmed by genetic complementation. Sequence analyses suggested that BnaC.Tic40 originated from BolC.Tic40 on the Brassica oleracea linkage group C9, whereas its allele Bnms3 was derived from BraA.Tic40 on the Brassica rapa linkage group A10. The BnaC.Tic40 gene is highly expressed in the tapetum and encodes a putative plastid inner envelope membrane translocon, Tic40, which is localized into the chloroplast. Transmission electron microscopy (TEM) and lipid staining analyses suggested that BnaC.Tic40 is a key factor in controlling lipid accumulation in the tapetal plastids. These data indicate that BnaC.Tic40 participates in specific protein translocation across the inner envelope membrane in the tapetal plastid, which is required for tapetal development and function.


Assuntos
Brassica napus/crescimento & desenvolvimento , Brassica/genética , Proteínas de Cloroplastos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Plantas/metabolismo , Pólen/crescimento & desenvolvimento , Brassica/metabolismo , Proteínas de Cloroplastos/genética , Cloroplastos/metabolismo , Mapeamento Cromossômico , Clonagem Molecular , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Metabolismo dos Lipídeos , Proteínas de Membrana/genética , Infertilidade das Plantas , Proteínas de Plantas/genética , Transporte Proteico , Análise de Sequência de DNA
15.
J Exp Bot ; 63(5): 2041-58, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22174440

RESUMO

7365AB, a recessive genetic male sterility system, is controlled by BnMs3 in Brassica napus, which encodes a Tic40 protein required for tapetum development. However, the role of BnMs3 in rapeseed anther development is still largely unclear. In this research, cytological analysis revealed that anther development of a Bnms3 mutant has defects in the transition of the tapetum to the secretory type, callose degradation, and pollen-wall formation. A total of 76 down-regulated unigenes in the Bnms3 mutant, several of which are associated with tapetum development, callose degeneration, and pollen development, were isolated by suppression subtractive hybridization combined with a macroarray analysis. Reverse genetics was applied by means of Arabidopsis insertional mutant lines to characterize the function of these unigenes and revealed that MSR02 is only required for transport of sporopollenin precursors through the plasma membrane of the tapetum. The real-time PCR data have further verified that BnMs3 plays a primary role in tapetal differentiation by affecting the expression of a few key transcription factors, participates in tapetal degradation by modulating the expression of cysteine protease genes, and influences microspore separation by manipulating the expression of BnA6 and BnMSR66 related to callose degradation and of BnQRT1 and BnQRT3 required for the primary cell-wall degradation of the pollen mother cell. Moreover, BnMs3 takes part in pollen-wall formation by affecting the expression of a series of genes involved in biosynthesis and transport of sporopollenin precursors. All of the above results suggest that BnMs3 participates in tapetum development, microspore release, and pollen-wall formation in B. napus.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Brassica napus/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Glucanos/metabolismo , Proteínas de Plantas/metabolismo , Pólen/crescimento & desenvolvimento , Sequência de Aminoácidos , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/fisiologia , Biopolímeros/metabolismo , Brassica napus/citologia , Brassica napus/genética , Brassica napus/crescimento & desenvolvimento , Carotenoides/metabolismo , Diferenciação Celular , Análise por Conglomerados , Regulação para Baixo/genética , Flores/citologia , Flores/genética , Flores/crescimento & desenvolvimento , Flores/fisiologia , Perfilação da Expressão Gênica , Modelos Biológicos , Dados de Sequência Molecular , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Infertilidade das Plantas , Proteínas de Plantas/genética , Pólen/citologia , Pólen/genética , Pólen/fisiologia , Alinhamento de Sequência , Fatores de Tempo
16.
Theor Appl Genet ; 124(7): 1193-200, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22246313

RESUMO

A recessive epistatic genic male sterile two-type line, 7365AB (Bnms3ms3ms4msRrfRf/BnMs3ms3ms4ms4RfRf), combined with the fertile interim-maintainer 7365C (Bnms3ms3ms4ms4rfrf) is an effective pollination control system in hybrid rapeseed production. We report an effective strategy used to fine map BnMs4 and BnRf. The two genes were both defined to a common microsyntenic region with Arabidopsis chromosome 3 using intron polymorphism (IP) markers developed according to Arabidopsis genome information and published genome organization of the A genome. The near-isogenic lines 7365AC (Bnms3ms3ms4ms4Rfrf/Bnms3ms3ms4ms4rfrf) of BnRf and 736512AB (Bnms3ms3Ms4ms4RfRf/Bnms3ms3ms4ms4RfRf) of BnMs4 were constructed to screen developed markers and create genetic linkage maps. Nine polymorphic IP markers (P1-P9) were identified. Of these, P2, P3, P4, and P6 were linked to both BnMs4 and BnRf with genetic distances <0.6 cM. Three simple sequence repeat markers, SR2, SR3, and SR5, were also identified by using public information. Subsequently, all markers linked to the two genes were used to compare the micro-collinearity of the regions flanking the two genes with Brassica rapa and Arabidopsis. The flanking regions showed rearrangements and inversion with fragments of different Arabidopsis chromosomes, but a high collinearity with B. rapa. This collinearity provided extremely valuable reference for map-based cloning in polyploid Brassica species. These IP markers could be exploited for comparative genomic studies within and between Brassica species, providing an economically feasible approach for molecular marker-assisted selection breeding, accelerating the process of gene cloning, and providing more direct evidence for the presence of multiple alleles between BnMs4 and BnRf.


Assuntos
Arabidopsis/genética , Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Genes de Plantas/genética , Sintenia , Sequência de Bases , Brassica/genética , Ligação Genética , Marcadores Genéticos , Genoma de Planta , Repetições de Microssatélites , Infertilidade das Plantas/genética , Poliploidia , Análise de Sequência de DNA
17.
Genes (Basel) ; 13(1)2021 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-35052398

RESUMO

Young, or newly evolved, genes arise ubiquitously across the tree of life, and they can rapidly acquire novel functions that influence a diverse array of biological processes. Previous work identified a young regulatory duplicate gene in Drosophila, Zeus that unexpectedly diverged rapidly from its parent, Caf40, an extremely conserved component in the CCR4-NOT machinery in post-transcriptional and post-translational regulation of eukaryotic cells, and took on roles in the male reproductive system. This neofunctionalization was accompanied by differential binding of the Zeus protein to loci throughout the Drosophila melanogaster genome. However, the way in which new DNA-binding proteins acquire and coevolve with their targets in the genome is not understood. Here, by comparing Zeus ChIP-Seq data from D. melanogaster and D. simulans to the ancestral Caf40 binding events from D. yakuba, a species that diverged before the duplication event, we found a dynamic pattern in which Zeus binding rapidly coevolved with a previously unknown DNA motif, which we term Caf40 and Zeus-Associated Motif (CAZAM), under the influence of positive selection. Interestingly, while both copies of Zeus acquired targets at male-biased and testis-specific genes, D. melanogaster and D. simulans proteins have specialized binding on different chromosomes, a pattern echoed in the evolution of the associated motif. Using CRISPR-Cas9-mediated gene knockout of Zeus and RNA-Seq, we found that Zeus regulated the expression of 661 differentially expressed genes (DEGs). Our results suggest that the evolution of young regulatory genes can be coupled to substantial rewiring of the transcriptional networks into which they integrate, even over short evolutionary timescales. Our results thus uncover dynamic genome-wide evolutionary processes associated with new genes.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Endopeptidases/genética , Células Eucarióticas/metabolismo , Evolução Molecular , Retroelementos , Ribonucleases/genética , Animais , Drosophila melanogaster/crescimento & desenvolvimento , Feminino , Redes Reguladoras de Genes , Masculino
18.
Plant Mol Biol ; 72(1-2): 111-23, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19862484

RESUMO

Male sterility is an important contributor to heterosis in Brassica napus L. The B. napus line 7-7365ABC is a recessive epistatic genic male sterile (REGMS) three-line system. The 7-7365A line with the genotype Bnms3ms3ms4ms4RfRf is male-sterile, while the 7-7365B line with the genotype BnMs3ms3ms4ms4RfRf is male-fertile, and 7-7365C with homozygous recessive genotypes at the three loci shows male fertility because the loss function of Bnrf gene causes the inhibition of the genetic trait of the double mutant Bnms3 Bnms4. Histological studies addressing male sterility, transcriptional regulation pathways and the role of abscisic acid (ABA) in the anther development of REGMS plants are reported here. In the male-sterile line 7-7365A, tapetum cell and microspore mother cell separation were affected, and this led to failure of microspore release. The activity of polygalacturonase and the expression of the pectin methylesterase gene (AT3g06830) were significantly downregulated. Nine genes were downregulated in 7-7365A compared to 7-7365B and 7-7365C, including genes specifically expressed in tapetum (A3, A9, MS1) and the ABA-responsive gene KIN1. ABA concentration in 7-7365B was significantly higher than in 7-7365A and 7-7365C in young flower buds. Furthermore, temperature treatment made some sterile 7-7365A flowers become fertile. The stamens in these flowers produced viable pollen, and filament elongation was restored to its level in 7-7365C. We propose that ABA might control the expression of genes involved in cell separation during early anther development. The REGMS phenotype could be controlled by a primary pathway of male sterile metabolism positively regulated by the BnMs3 gene and a supplementary pathway negatively regulated by the BnRf gene.


Assuntos
Ácido Abscísico/fisiologia , Brassica napus/citologia , Brassica napus/metabolismo , Flores/citologia , Flores/metabolismo , Infertilidade das Plantas/fisiologia , Ácido Abscísico/metabolismo , Northern Blotting , Brassica napus/genética , Brassica napus/fisiologia , Ensaio de Imunoadsorção Enzimática , Flores/genética , Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Infertilidade das Plantas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Temperatura
19.
PLoS One ; 15(7): e0236273, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32722687

RESUMO

Creating a homologous restorer line for Ogura cytoplasmic male sterility (Ogu-CMS) in Brassica napus is meaningful for the wider application of Ogu-CMS system in rapeseed production. Previously, an independent development of a new Ogu-CMS restorer line (CLR650) was reported locally from crossing between Raphanobrassica (AACCRR, 2n = 56) and B. napus and a new version of Ogu CMS lines CLR6430 derived from CLR650 was characterized in this study. The results showed that the fertility restoration gene in CLR6430 presented a distorted segregation in different segregating populations. However, the majority of somatic cells from roots had a regular chromosome number (2n = 38) and no radish signal covered a whole chromosome was detected using GISH. Thirty-two specific markers derived from the introgressed radish fragments were developed based on the re-sequencing results. Unique radish insertions and differences between CLR6430 and R2000 were also identified through both radish-derived markers and PCR product sequences. Further investigations on the genetic behaviors, interactions between the fertility restoration and other traits and specific molecular markers to the introgression in CLR6430 were also conducted in this study. These results should provide the evidence of nucleotide differences between CLR6430 and R2000, and the specific markers will be helpful for breeding new Ogura restore lines in future.


Assuntos
Brassica napus/genética , Marcadores Genéticos/genética , Infertilidade das Plantas/genética , Brassica rapa/genética , Mapeamento Cromossômico , Cromossomos de Plantas , DNA de Plantas/química , DNA de Plantas/isolamento & purificação , DNA de Plantas/metabolismo , Repetições de Microssatélites/genética , Raphanus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA