Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Chem Inf Model ; 64(7): 2889-2900, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-37733290

RESUMO

MicroRNAs (miRNAs) are an essential type of small molecule RNAs that play significant regulatory roles in organisms. Recent studies have demonstrated that small open reading frames (sORFs) harbored in primary miRNAs (pri-miRNAs) can encode small peptides, known as miPEPs. Plant miPEPs can increase the abundance and activity of cognate miRNAs by promoting the transcription of their corresponding pri-miRNAs, thereby modulating plant traits. Biological experiments are the most effective way to accurately identify miPEPs; however, they are time-consuming and expensive. Hence, an efficient computational method for the identification of miPEPs on a large scale is highly desirable. Up to now, there have been no specialized computational tools for identifying miPEPs. In this work, a novel predictor named miPEPPred-FRL based on an adaptive feature representation learning framework that consists of the feature transformation module and the cascade architecture has been proposed. The feature transformation module integrating a newly designed feature selection method and classifier selection rule is developed to convert sequence-based features into primary class and probabilistic features, which are then fed into the improved cascade architecture to obtain more stable and discriminative augmented features. Finally, the augmented features are utilized to construct the final predictor. Cross-validation experiments illustrate that the novel feature selection method and classifier selection rule contribute to boosting the feature representation ability of the framework. Furthermore, the high accuracy of miPEPPred-FRL on independent testing data suggests that it is a trustworthy and valuable tool for the identification of miPEPs.


Assuntos
MicroRNAs , MicroRNAs/química , Plantas , Peptídeos , Biologia Computacional/métodos
2.
Comput Biol Med ; 166: 107545, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37806057

RESUMO

Antimicrobial peptides (AMPs) play a crucial role in plant immune regulation, growth and development stages, which have attracted significant attentions in recent years. As the wet-lab experiments are laborious and cost-prohibitive, it is indispensable to develop computational methods to discover novel plant AMPs accurately. In this study, we presented a hierarchical evolutionary ensemble framework, named PAMPred, which consisted of a multi-level heterogeneous architecture to identify plant AMPs. Specifically, to address the existing class imbalance problem, a cluster-based resampling method was adopted to build multiple balanced subsets. Then, several peptide features including sequence information-based and physicochemical properties-based features were fed into the different types of basic learners to increase the ensemble diversity. For boosting the predictive capability of PAMPred, the improved particle swarm optimization (PSO) algorithm and dynamic ensemble pruning strategy were used to optimize the weights at different levels adaptively. Furthermore, extensive ten-fold cross-validation and independent testing experimental results demonstrated that PAMPred achieved excellent prediction performance and generalization ability, and outperformed the state-of-the-art methods. It also indicated that the proposed method could serve as an effective auxiliary tool to identify plant AMPs, which would be conducive to explore the immune regulatory mechanism of plants.

3.
RSC Adv ; 10(8): 4446-4454, 2020 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35495231

RESUMO

Influenza infection is a major cause of morbidity and mortality during seasonal epidemics and sporadic pandemics. It is important and urgent to develop new anti-influenza agents with a new mechanism of action. Nucleozin has been reported as a potent antagonist of nucleoprotein accumulation in the nucleus. In this study, a new series of isoxazol-4-carboxa piperidyl derivatives 1a-j were synthesized and their chemical structures were confirmed by 1H, 13C NMR and mass spectral data. Furthermore, all the synthesized compounds were evaluated for in vitro anti-influenza virus activity against influenza virus (A/PR/8/34 H1N1). Among all the compounds, 1a, 1b, 1c, 1f and 1g exhibited more potent activity than the standard drug, and compound 1b has showed most promising anti-influenza virus activity. These results are also consistent with the docking study results in terms of the design of compounds targeting influenza A via viral nucleoprotein.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA