Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Arterioscler Thromb Vasc Biol ; 43(2): 352-358, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36475702

RESUMO

BACKGROUND: PCSK9 (proprotein convertase subtilisin-kexin type 9) chaperones the hepatic LDLR (low-density lipoprotein receptor) for lysosomal degradation, elevating serum LDL (low-density lipoprotein) cholesterol and promoting atherosclerotic heart disease. Though the major effect on the hepatic LDLR comes from secreted PCSK9, the details of PCSK9 reuptake into the hepatocyte remain unclear. In both tissue culture and animal models, HSPGs (heparan sulfate proteoglycans) on hepatocytes act as co-receptors to promote PCSK9 reuptake. We hypothesized that if this PCSK9:HSPG interaction is important in humans, disrupting it with unfractionated heparin (UFH) would acutely displace PCSK9 from the liver and increase plasma PCSK9. METHODS: We obtained remnant plasma samples from 160 subjects undergoing cardiac catheterization before and after administration of intravenous UFH. PCSK9 levels were determined using a commercial enzyme-linked immunosorbent assay. RESULTS: Median plasma PCSK9 was 113 ng/mL prior to UFH and 119 ng/mL afterward. This difference was not significant (P=0.83 [95% CI, -6.23 to 6.31 ng/mL]). Equivalence testing provided 95% confidence that UFH would not raise plasma PCSK9 by > 4.7%. Among all subgroups, only subjects with the lowest baseline PCSK9 concentrations exhibited a response to UFH (8.8% increase, adj. P=0.044). A modest correlation was observed between baseline plasma PCSK9 and the change in plasma PCSK9 due to UFH (RS=-0.3634; P<0.0001). CONCLUSIONS: Administration of UFH does not result in a clinically meaningful effect on circulating PCSK9 among an unselected population of humans. The results cast doubt on the clinical utility of disrupting the PCSK9:HSPG interaction as a general therapeutic strategy for PCSK9 inhibition. However, the observations suggest that in selected populations, disrupting the PCSK9:HSPG interaction could still affect PCSK9 reuptake and offer a therapeutic benefit.


Assuntos
Heparina , Pró-Proteína Convertase 9 , Animais , Humanos , Pró-Proteína Convertase 9/metabolismo , Serina Endopeptidases , Pró-Proteína Convertases/metabolismo , Proteoglicanas de Heparan Sulfato , Receptores de LDL/metabolismo , LDL-Colesterol , Subtilisinas
2.
Hum Mol Genet ; 29(13): 2218-2239, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32504085

RESUMO

The RNA exosome is an essential ribonuclease complex required for processing and/or degradation of both coding and non-coding RNAs. We identified five patients with biallelic variants in EXOSC5, which encodes a structural subunit of the RNA exosome. The clinical features of these patients include failure to thrive, short stature, feeding difficulties, developmental delays that affect motor skills, hypotonia and esotropia. Brain MRI revealed cerebellar hypoplasia and ventriculomegaly. While we ascertained five patients, three patients with distinct variants of EXOSC5 were studied in detail. The first patient had a deletion involving exons 5-6 of EXOSC5 and a missense variant, p.Thr114Ile, that were inherited in trans, the second patient was homozygous for p.Leu206His and the third patient had paternal isodisomy for chromosome 19 and was homozygous for p.Met148Thr. The additional two patients ascertained are siblings who had an early frameshift mutation in EXOSC5 and the p.Thr114Ile missense variant that were inherited in trans. We employed three complementary approaches to explore the requirement for EXOSC5 in brain development and assess consequences of pathogenic EXOSC5 variants. Loss of function for exosc5 in zebrafish results in shortened and curved tails/bodies, reduced eye/head size and edema. We modeled pathogenic EXOSC5 variants in both budding yeast and mammalian cells. Some of these variants cause defects in RNA exosome function as well as altered interactions with other RNA exosome subunits. These findings expand the number of genes encoding RNA exosome subunits linked to human disease while also suggesting that disease mechanism varies depending on the specific pathogenic variant.


Assuntos
Antígenos de Neoplasias/genética , Cerebelo/anormalidades , Deficiências do Desenvolvimento/genética , Nanismo/genética , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Malformações do Sistema Nervoso/genética , Proteínas de Ligação a RNA/genética , Animais , Cerebelo/patologia , Deficiências do Desenvolvimento/patologia , Nanismo/patologia , Mutação da Fase de Leitura/genética , Homozigoto , Humanos , Mutação de Sentido Incorreto/genética , Malformações do Sistema Nervoso/patologia , Linhagem , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento
3.
Bio Protoc ; 13(2)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36789164

RESUMO

Genome-wide CRISPR-based screening is a powerful tool in forward genetics, enabling biologic discovery by linking a desired phenotype to a specific genetic perturbation. However, hits from a genome-wide screen require individual validation to reproduce and accurately quantify their effects outside of a pooled experiment. Here, we describe a step-by-step protocol to rapidly assess the effects of individual sgRNAs from CRISPR interference (CRISPRi) and CRISPR activation (CRISPRa) systems. All steps, including cloning, lentivirus generation, cell transduction, and phenotypic readout, can be performed entirely in 96-well plates. The system is highly flexible in both cell type and selection system, requiring only that the phenotype(s) of interest be read out via flow cytometry. We expect that this protocol will provide researchers with a rapid way to sift through potential screening hits, and prioritize them for deeper analysis in more complex in vitro or even in vivo systems. Graphical abstract.

4.
Sci Transl Med ; 14(662): eabj8670, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36103516

RESUMO

The low-density lipoprotein receptor (LDLR) controls cellular delivery of cholesterol and clears LDL from the bloodstream, protecting against atherosclerotic heart disease, the leading cause of death in the United States. We therefore sought to identify regulators of the LDLR beyond the targets of current therapies and known causes of familial hypercholesterolemia. We found that cold shock domain-containing protein E1 (CSDE1) enhanced hepatic LDLR messenger RNA (mRNA) decay via its 3' untranslated region and regulated atherogenic lipoproteins in vivo. Using parallel phenotypic genome-wide CRISPR interference screens in a tissue culture model, we identified 40 specific regulators of the LDLR that were not previously identified by observational human genetic studies. Among these, we demonstrated that, in HepG2 cells, CSDE1 regulated the LDLR at least as strongly as statins and proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors. In addition, we showed that hepatic gene silencing of Csde1 treated diet-induced dyslipidemia in mice to a similar degree as Pcsk9 silencing. These results suggest the therapeutic potential of targeting CSDE1 to manipulate the posttranscriptional regulation of the LDLR mRNA for the prevention of cardiovascular disease. Our approach of modeling a clinically relevant phenotype in a forward genetic screen, followed by mechanistic pharmacologic dissection and in vivo validation, may serve as a generalizable template for the identification of therapeutic targets in other human disease states.


Assuntos
Resposta ao Choque Frio , Proteínas de Ligação a DNA/metabolismo , Pró-Proteína Convertase 9 , Proteínas de Ligação a RNA/metabolismo , Animais , Humanos , Camundongos , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/metabolismo , RNA Mensageiro/genética , Receptores de LDL/genética , Receptores de LDL/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA