Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
J Am Chem Soc ; 145(48): 26308-26317, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-37983668

RESUMO

Friedel-Crafts acylation (FCA) is a highly beneficial approach in organic chemistry for creating the important C-C bonds that are necessary for building intricate frameworks between aromatic substrates and an acyl group. However, there are few reports about enzyme catalyzed FCA reactions. In this study, 4-acyl-5-aminoimidazole alkaloids (AAIAs), streptimidazoles A-C (1-3), and the enantiopure (+)-nocarimidazole C (4) as well as their ribosides, streptimidazolesides A-D (5-8), were identified from the fermentation broth of Streptomyces sp. OUCMDZ-944 or heterologous S. coelicolor M1154 mutant. The biosynthetic gene cluster (smz) was identified, and the biosynthetic pathway of AAIAs was elucidated for the first time. In vivo and in vitro studies proved the catalytic activity of the four essential genes smzB, -C, -E, and -F for AAIAs biosynthesis and clarified the biosynthetic process of the alkaloids. The ligase SmzE activates fatty acyl groups and connects them to the acyl carrier protein (ACP) holo-SmzF. Then, the acyl group is transferred onto the key residue Cys49 of SmzB, a new Friedel-Crafts acyltransferase (FCase). Subsequently, the FCA reaction between the acyl groups and 5-aminoimidazole ribonucleotide (AIR) occurs to generate the key intermediate AAIA-nucleotides catalyzed by SmzB. Finally, the hydrolase SmzC catalyzes the N-glycosidic bond cleavage of the intermediates to form AAIAs. Structural simulation, molecular modeling, and mutational analysis of SmzB showed that Tyr26, Cys49, and Tyr93 are the key catalytic residues in the C-C bond formation of the acyl chain of AAIAs, providing mechanistic insights into the enzymatic FCA reaction.


Assuntos
Aciltransferases , Imidazóis , Aciltransferases/química , Proteína de Transporte de Acila/química , Catálise
2.
J Magn Reson Imaging ; 58(5): 1624-1635, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-36965182

RESUMO

BACKGROUND: Brain metastasis (BM) is a serious neurological complication of cancer of different origins. The value of deep learning (DL) to identify multiple types of primary origins remains unclear. PURPOSE: To distinguish primary site of BM and identify the best DL models. STUDY TYPE: Retrospective. POPULATION: A total of 449 BM derived from 214 patients (49.5% for female, mean age 58 years) (100 from small cell lung cancer [SCLC], 125 from non-small cell lung cancer [NSCLC], 116 from breast cancer [BC], and 108 from gastrointestinal cancer [GIC]) were included. FIELD STRENGTH/SEQUENCE: A 3-T, T1 turbo spin echo (T1-TSE), T2-TSE, T2FLAIR-TSE, DWI echo-planar imaging (DWI-EPI) and contrast-enhanced T1-TSE (CE T1-TSE). ASSESSMENT: Lesions were divided into training (n = 285, 153 patients), testing (n = 122, 93 patients), and independent testing cohorts (n = 42, 34 patients). Three-dimensional residual network (3D-ResNet), named 3D ResNet6 and 3D ResNet 18, was proposed for identifying the four origins based on single MRI and combined MRI (T1WI + T2-FLAIR + DWI, CE-T1WI + DWI, CE-T1WI + T2WI + DWI). DL model was used to distinguish lung cancer from non-lung cancer; then SCLC vs. NSCLC for lung cancer classification and BC vs. GIC for non-lung cancer classification was performed. A subjective visual analysis was implemented and compared with DL models. Gradient-weighted class activation mapping (Grad-CAM) was used to visualize the model by heatmaps. STATISTICAL TESTS: The area under the receiver operating characteristics curve (AUC) assess each classification performance. RESULTS: 3D ResNet18 with Grad-CAM and AIC showed better performance than 3DResNet6, 3DResNet18 and the radiologist for distinguishing lung cancer from non-lung cancer, SCLC from NSCLC, and BC from GIC. For single MRI sequence, T1WI, DWI, and CE-T1WI performed best for lung cancer vs. non-lung cancer, SCLC vs. NSCLC, and BC vs. GIC classifications. The AUC ranged from 0.675 to 0.876 and from 0.684 to 0.800 regarding the testing and independent testing datasets, respectively. For combined MRI sequences, the combination of CE-T1WI + T2WI + DWI performed better for BC vs. GIC (AUCs of 0.788 and 0.848 on testing and independent testing datasets, respectively), while the combined MRI approach (T1WI + T2-FLAIR + DWI, CE-T1WI + DWI) could not achieve higher AUCs for lung cancer vs. non-lung cancer, SCLC vs. NSCLC. Grad-CAM helped for model visualization by heatmaps that focused on tumor regions. DATA CONCLUSION: DL models may help to distinguish the origins of BM based on MRI data. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 2.


Assuntos
Neoplasias Encefálicas , Neoplasias da Mama , Carcinoma Pulmonar de Células não Pequenas , Aprendizado Profundo , Neoplasias Pulmonares , Humanos , Feminino , Pessoa de Meia-Idade , Imagem de Difusão por Ressonância Magnética/métodos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Estudos Retrospectivos , Neoplasias Pulmonares/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia
3.
Eur Radiol ; 33(11): 7609-7617, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37266658

RESUMO

OBJECTIVE: To study the value of radiomics models based on plain and multiphase contrast-enhanced CT to predict Ki-67 expression in gastrointestinal stromal tumors (GISTs). METHODS: A total of 215 patients with GISTs were retrospectively analyzed, including 150 patients in one hospital as the training set and 65 patients in another hospital as the external verification set. The tumor at the largest level of CT images was delineated as the region of interest (ROI). The maximum diameter of the ROI was defined as the tumor size. A total of 851 radiomics features were extracted from each ROI by 3D Slicer Radiomics. After dimensionality reduction, three machine learning classification algorithms including logistic regression (LR), random forest (RF), and support vector machine (SVM) were used for Ki-67 expression prediction. Using a multivariable logistic model, a nomogram was established to predict the expression of Ki-67 individually. RESULTS: Delong tests showed that the SVM models had the highest accuracy in the arterial phase (Z value 0.217-1.139) and venous phase (Z value 0.022-1.396). For the plain phase, LR and SVM models had the highest accuracy (Z value 0.874-1.824, 1.139-1.763). For the delayed phase, LR models had the highest accuracy (Z value 0.056-1.824). For the combined phase, RF models had the highest accuracy (Z value 0.232-1.978). There was no significant difference among the above models for KI-67 expression prediction (Z value 0.022-1.978). A nomogram was developed with a C-index of 0.913 (95% CI, 0.878 to 0.956). CONCLUSIONS: Radiomics of both plain and enhanced CT images could accurately predict the expression of Ki-67 in GIST. For patients who were not suitable to use contrast agents, plain scan could be used as an alternative. CLINICAL RELEVANCE STATEMENT: CT radiomics could accurately predict the expression of Ki-67 in GIST, which has a great clinical value in reflecting the proliferative activity of tumor cells and helping determine whether a patient is suitable for adjuvant therapy with imatinib. KEY POINTS: • Radiomics of both plain and enhanced CT images could accurately predict the expression of Ki-67 in GIST. • For patients who were not suitable to use contrast agents, plain scan could be used as an alternative. • A radiomics nomogram was developed to allow personalized preoperative evaluation with high accuracy.


Assuntos
Tumores do Estroma Gastrointestinal , Humanos , Tumores do Estroma Gastrointestinal/diagnóstico por imagem , Antígeno Ki-67 , Meios de Contraste/farmacologia , Estudos Retrospectivos , Tomografia Computadorizada por Raios X
4.
Sensors (Basel) ; 23(10)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37430706

RESUMO

Railway defects can result in substantial economic and human losses. Among all defects, surface defects are the most common and prominent type, and various optical-based non-destructive testing (NDT) methods have been employed to detect them. In NDT, reliable and accurate interpretation of test data is vital for effective defect detection. Among the many sources of errors, human errors are the most unpredictable and frequent. Artificial intelligence (AI) has the potential to address this challenge; however, the lack of sufficient railway images with diverse types of defects is the major obstacle to training the AI models through supervised learning. To overcome this obstacle, this research proposes the RailGAN model, which enhances the basic CycleGAN model by introducing a pre-sampling stage for railway tracks. Two pre-sampling techniques are tested for the RailGAN model: image-filtration, and U-Net. By applying both techniques to 20 real-time railway images, it is demonstrated that U-Net produces more consistent results in image segmentation across all images and is less affected by the pixel intensity values of the railway track. Comparison of the RailGAN model with U-Net and the original CycleGAN model on real-time railway images reveals that the original CycleGAN model generates defects in the irrelevant background, while the RailGAN model produces synthetic defect patterns exclusively on the railway surface. The artificial images generated by the RailGAN model closely resemble real cracks on railway tracks and are suitable for training neural-network-based defect identification algorithms. The effectiveness of the RailGAN model can be evaluated by training a defect identification algorithm with the generated dataset and applying it to real defect images. The proposed RailGAN model has the potential to improve the accuracy of NDT for railway defects, which can ultimately lead to increased safety and reduced economic losses. The method is currently performed offline, but further study is planned to achieve real-time defect detection in the future.

5.
J Digit Imaging ; 36(4): 1480-1488, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37156977

RESUMO

This study aims to develop and validate a deep learning (DL) model to differentiate glioblastoma from single brain metastasis (BM) using conventional MRI combined with diffusion-weighted imaging (DWI). Preoperative conventional MRI and DWI of 202 patients with solitary brain tumor (104 glioblastoma and 98 BM) were retrospectively obtained between February 2016 and September 2022. The data were divided into training and validation sets in a 7:3 ratio. An additional 32 patients (19 glioblastoma and 13 BM) from a different hospital were considered testing set. Single-MRI-sequence DL models were developed using the 3D residual network-18 architecture in tumoral (T model) and tumoral + peritumoral regions (T&P model). Furthermore, the combination model based on conventional MRI and DWI was developed. The area under the receiver operating characteristic curve (AUC) was used to assess the classification performance. The attention area of the model was visualized as a heatmap by gradient-weighted class activation mapping technique. For the single-MRI-sequence DL model, the T2WI sequence achieved the highest AUC in the validation set with either T models (0.889) or T&P models (0.934). In the combination models of the T&P model, the model of DWI combined with T2WI and contrast-enhanced T1WI showed increased AUC of 0.949 and 0.930 compared with that of single-MRI sequences in the validation set, respectively. And the highest AUC (0.956) was achieved by combined contrast-enhanced T1WI, T2WI, and DWI. In the heatmap, the central region of the tumoral was hotter and received more attention than other areas and was more important for differentiating glioblastoma from BM. A conventional MRI-based DL model could differentiate glioblastoma from solitary BM, and the combination models improved classification performance.


Assuntos
Neoplasias Encefálicas , Aprendizado Profundo , Glioblastoma , Humanos , Glioblastoma/diagnóstico por imagem , Glioblastoma/patologia , Estudos Retrospectivos , Sensibilidade e Especificidade , Imageamento por Ressonância Magnética/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia
6.
Microb Cell Fact ; 21(1): 208, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36217200

RESUMO

BACKGROUND: Glucoside natural products have been showing great medicinal values and potentials. However, the production of glucosides by plant extraction, chemical synthesis, and traditional biotransformation is insufficient to meet the fast-growing pharmaceutical demands. Microbial synthetic biology offers promising strategies for synthesis and diversification of plant glycosides. RESULTS: In this study, the two efficient UDP-glucosyltransferases (UGTs) (UGT85A1 and RrUGT3) of plant origin, that are capable of recognizing phenolic aglycons, are characterized in vitro. The two UGTs show complementary regioselectivity towards the alcoholic and phenolic hydroxyl groups on phenolic substrates. By combining a developed alkylphenol bio-oxidation system and these UGTs, twenty-four phenolic glucosides are enzymatically synthesized from readily accessible alkylphenol substrates. Based on the bio-oxidation and glycosylation systems, a number of microbial cell factories are constructed and applied to biotransformation, giving rise to a variety of plant and plant-like O-glucosides. Remarkably, several unnatural O-glucosides prepared by the two UGTs demonstrate better prolyl endopeptidase inhibitory and/or anti-inflammatory activities than those of the clinically used glucosidic drugs including gastrodin, salidroside and helicid. Furthermore, the two UGTs are also able to catalyze the formation of N- and S-glucosidic bonds to produce N- and S-glucosides. CONCLUSIONS: Two highly efficient UGTs, UGT85A1 and RrUGT3, with distinct regioselectivity were characterized in this study. A group of plant and plant-like glucosides were efficiently synthesized by cell-based biotransformation using a developed alkylphenol bio-oxidation system and these two UGTs. Many of the O-glucosides exhibited better PEP inhibitory or anti-inflammatory activities than plant-origin glucoside drugs, showing significant potentials for new glucosidic drug development.


Assuntos
Produtos Biológicos , Glucosiltransferases , Glucosídeos/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Preparações Farmacêuticas , Prolil Oligopeptidases , Difosfato de Uridina
7.
BMC Med Imaging ; 22(1): 172, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36184590

RESUMO

BACKGROUND: There is an annual increase in the incidence of invasive fungal disease (IFD) of the lung worldwide, but it is always a challenge for physicians to make an early diagnosis of IFD of the lung. Computed tomography (CT) may play a certain role in the diagnosis of IFD of the lung, however, there are no specific imaging signs for differentiating IFD of lung from bacterial pneumonia (BP). METHODS: A total of 214 patients with IFD of the lung or clinically confirmed BP were retrospectively enrolled from two institutions (171 patients from one institution in the training set and 43 patients from another institution in the test set). The features of thoracic CT images of the 214 patients were analyzed on the picture archiving and communication system by two radiologists, and these CT images were imported into RadCloud to perform radiomics analysis. A clinical model from radiologic analysis, a radiomics model from radiomics analysis and a combined model from integrating radiologic and radiomics analysis were constructed in the training set, and a nomogram based on the combined model was further developed. The area under the ROC curve (AUC) of the receiver operating characteristic (ROC) curve was calculated to assess the diagnostic performance of the three models. Decision curve analysis (DCA) was conducted to evaluate the clinical utility of the three models by estimating the net benefit at a range of threshold probabilities. RESULTS: The AUCs of the clinical model for differentiating IFD of lung from BP in the training set and test sets were 0.820 and 0.827. The AUCs of the radiomics model in the training set and test sets were 0.895 and 0.857. The AUCs of the combined model in the training set and test setswere 0.944 and 0.911. The combined model for differentiating IFD of lung from BP obtained the greatest net benefit among the three models by DCA. CONCLUSION: Our proposed nomogram, based on a combined model integrating radiologic and radiomics analysis, has a powerful predictive capability for differentiating IFD from BP. A good clinical outcome could be obtained using our nomogram.


Assuntos
Micoses , Pneumonia Bacteriana , Humanos , Pulmão/diagnóstico por imagem , Nomogramas , Pneumonia Bacteriana/diagnóstico por imagem , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos
8.
Plant J ; 104(5): 1269-1284, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32996185

RESUMO

Plant acclimatory responses to phosphate (Pi) starvation stress include the accumulation of carbohydrates, namely sugar and starch. However, whether altered endogenous carbohydrate profile could in turn affect plant Pi starvation responses remains widely unexplored. Here, two genes encoding the large and small subunits of an ADP-glucose pyrophosphorylase (AGP) in rice (Oryza sativa), AGP Large Subunit 1 (AGPL1) and AGP Small Subunit 1 (AGPS1), were functionally characterized with regard to maintenance of phosphorus (P) homeostasis and regulation of Pi starvation signaling. AGPL1 and AGPS1 were both positively responsive to nitrogen (N) or Pi deprivation, and expressed in almost all the tissues except in the meristem and mature zones of root. AGPL1 and AGPS1 physically interacted in chloroplast, and catalyzed the rate-limiting step of starch biosynthesis. Low-N- (LN) and low-Pi (LP)-triggered starch accumulation in leaves was impaired in agpl1, agps1 and apgl1 agps1 mutants compared with the wild-type plants. By contrast, mutation of AGPL1 and/or AGPS1 led to an increase in the content of the major sugar, sucrose, in leaf sheath and root under control and LN conditions. Moreover, the Pi accumulation was enhanced in the mutants under control and LN conditions, but not LP conditions. Notably, the LN-induced suppression of Pi accumulation was compromised attributed to the mutation of AGPL1 and/or AGPS1. Furthermore, the increased Pi accumulation was accompanied by the specific suppression of OsSPX2 and activation of several Pi transporter genes. These results indicate that a balanced level of carbohydrates is vital for maintaining plant P homeostasis.


Assuntos
Glucose-1-Fosfato Adenililtransferase/metabolismo , Oryza/metabolismo , Fósforo/metabolismo , Proteínas de Plantas/metabolismo , Metabolismo dos Carboidratos/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação da Expressão Gênica de Plantas , Glucose-1-Fosfato Adenililtransferase/genética , Homeostase/fisiologia , Mutação , Nitrogênio/metabolismo , Oryza/genética , Fosfatos/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Subunidades Proteicas , Amido/metabolismo
9.
Eur Radiol ; 31(7): 4576-4586, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33447862

RESUMO

OBJECTIVE: To investigate the application of machine learning-based ultrasound radiomics in preoperative classification of primary and metastatic liver cancer. METHODS: Data of 114 consecutive histopathologically confirmed patients with liver cancer from January 2018 to November 2019 were retrospectively analyzed. All patients underwent liver ultrasonography within 1 week before hepatectomy or fine-needle biopsy. The liver lesions were manually segmented by two experts using ITK-SNAP software. Seven categories of radiomics features, including first-order, two-dimensional shape, gray-level co-occurrence matrices, gray-level run-length matrix, gray-level size-zone matrix, neighboring gray tone difference matrix, and gray-level dependence matrix, were extracted on the Pyradiomics platform. Fourteen filters were applied to the original images, and derived images were obtained. Then, the dimensions of radiomics features were reduced by least absolute shrinkage and selection operator (Lasso) method. Finally, k-nearest neighbor (KNN), logistic regression (LR), multilayer perceptron (MLP), random forest (RF), and support vector machine (SVM) were employed to distinguish primary liver cancer from metastatic liver cancer by a fivefold cross-validation strategy. The performance of the established model was mainly evaluated by the area under the receiver operating characteristic (ROC) curve (AUC) and accuracy. RESULTS: One thousand four hundred nine radiomics features were extracted from the original images and/or derived images for each patient. The mentioned five machine learning classifiers were able to differentiate primary liver cancer from metastatic liver cancer. LR outperformed other classifiers, with the accuracy of 0.843 ± 0.078 (AUC, 0.816 ± 0.088; sensitivity, 0.768 ± 0.232; specificity, 0.880 ± 0.117). CONCLUSIONS: Machine learning-based ultrasound radiomics features are able to non-invasively distinguish primary liver tumors from metastatic liver tumors. KEY POINTS: • Ultrasound-based radiomics was initially used for preoperative classification of primary versus metastatic liver cancer. • Multiple machine learning-based algorithms with cross-validation strategy were applied to extract machine learning-based ultrasound radiomics features. • Distinction between primary and metastatic tumors was obtained with a sensitivity of 0.768 and a specificity of 0.880.


Assuntos
Neoplasias Hepáticas , Aprendizado de Máquina , Humanos , Neoplasias Hepáticas/diagnóstico por imagem , Curva ROC , Estudos Retrospectivos , Ultrassonografia
10.
AJR Am J Roentgenol ; 216(6): 1510-1520, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33826360

RESUMO

OBJECTIVE. This study aimed to determine the best model for predicting microvascular invasion (MVI) of hepatocellular carcinoma (HCC) using conventional gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid (gadoxetate disodium)-enhanced MRI features and radiomics signatures with machine learning. MATERIALS AND METHODS. This retrospective study included 269 patients with a postoperative pathologic diagnosis of HCC. Gadoxetate disodium-enhanced MRI features were assessed, including T1 relaxation time, tumor margin, tumor size, peritumoral enhancement, peritumoral hypointensity, and ADC. Radiomics models were constructed and validated by machine learning. The least absolute shrinkage and selection operator (LASSO) was used for feature selection, and radiomics-based LASSO models were constructed with six classifiers. Predictive capability was assessed using the ROC AUC. RESULTS. Histologic examination confirmed MVI in 111 (41.3%) of the 269 patients. ADC value, nonsmooth tumor margin, and 20-minute T1 relaxation time showed diagnostic accuracy with AUC values of 0.850, 0.847, and 0.846, respectively (p < .05 for all). A total of 1395 quantitative imaging features were extracted. In the hepatobiliary phase (HBP) model, the support vector machine (SVM), extreme gradient boosting (XGBoost), and logistic regression (LR) classifiers showed greater diagnostic efficiency for predicting MVI, with AUCs of 0.942, 0.938, and 0.936, respectively (p < .05 for all). CONCLUSION. ADC value, nonsmooth tumor margin, and 20-minute T1 relaxation time show high diagnostic accuracy for predicting MVI. Radiomics signatures with machine learning can further improve the ability to predict MVI and are best modeled during HBP. The SVM, XGBoost, and LR classifiers may serve as potential biomarkers to evaluate MVI.


Assuntos
Carcinoma Hepatocelular/patologia , Meios de Contraste , Gadolínio DTPA , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Neoplasias Hepáticas/patologia , Imageamento por Ressonância Magnética/métodos , Microvasos/diagnóstico por imagem , Microvasos/patologia , Adulto , Idoso , Estudos de Coortes , Estudos Transversais , Humanos , Fígado/diagnóstico por imagem , Fígado/patologia , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica , Estudos Retrospectivos , Adulto Jovem
11.
BMC Med Imaging ; 21(1): 30, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33593304

RESUMO

BACKGROUND: To validate and compare various MRI-based radiomics models to evaluate treatment response to neoadjuvant chemoradiotherapy (nCRT) of rectal cancer. METHODS: A total of 80 patients with locally advanced rectal cancer (LARC) who underwent surgical resection after nCRT were enrolled retrospectively. Rectal MR images were scanned pre- and post-nCRT. The radiomics features were extracted from T2-weighted images, then reduced separately by least absolute shrinkage and selection operator (LASSO) and principal component analysis (PCA). Four classifiers of Logistic Regression, Random Forest (RF), Decision Tree and K-nearest neighbor (KNN) models were constructed to assess the tumor regression grade (TRG) and pathologic complete response (pCR), respectively. The diagnostic performances of models were determined with leave-one-out cross-validation by generating receiver operating characteristic curves and decision curve analysis. RESULTS: Three features related to the TRG and 11 features related to the pCR were obtained by LASSO. Top five principal components representing a cumulative contribution of 80% to overall features were selected by PCA. For TRG, the area under the curve (AUC) of RF model was 0.943 for LASSO and 0.930 for PCA, higher than other models (P < 0.05 for both). As for pCR, the AUCs of KNN for LASSO and PCA were 0.945 and 0.712, higher than other models (P < 0.05 for both). The DCA showed that LASSO algorithm was clinically superior to PCA. CONCLUSION: MRI-based radiomics models demonstrated good performance for evaluating the treatment response of LARC after nCRT and LASSO algorithm yielded more clinical benefit.


Assuntos
Algoritmos , Aprendizado de Máquina , Imageamento por Ressonância Magnética/métodos , Neoplasias Retais/terapia , Quimiorradioterapia Adjuvante , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Modelos Estatísticos , Terapia Neoadjuvante , Curva ROC , Interpretação de Imagem Radiográfica Assistida por Computador , Neoplasias Retais/cirurgia , Reto/diagnóstico por imagem , Reto/patologia , Reto/cirurgia
12.
BMC Med Imaging ; 19(1): 86, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31747902

RESUMO

BACKGROUND: This study aimed to evaluate the significance of MRI-based radiomics model derived from high-resolution T2-weighted images (T2WIs) in predicting tumor pathological features of rectal cancer. METHODS: A total of 152 patients with rectal cancer who underwent surgery without any neoadjuvant therapy between March 2017 and September 2018 were included retrospectively. The patients were scanned using a 3-T magnetic resonance imaging, and high-resolution T2WIs were obtained. Lesions were delineated, and 1029 radiomics features were extracted. Least absolute shrinkage and selection operator was used to select features, and multilayer perceptron (MLP), logistic regression (LR), support vector machine (SVM), decision tree (DT), random forest (RF), and K-nearest neighbor (KNN) were trained using fivefold cross-validation to build a prediction model. The diagnostic performance of the prediction models was assessed using the receiver operating characteristic curves. RESULTS: A total of 1029 features were extracted, and 15, 11, and 11 features were selected to predict the degree of differentiation, T stage, and N stage, respectively. The best performance of the radiomics model for the degree of differentiation, T stage, and N stage was obtained by SVM [area under the curve (AUC), 0.862; 95% confidence interval (CI), 0.750-0.967; sensitivity, 83.3%; specificity, 85.0%], MLP (AUC, 0.809; 95% CI, 0.690-0.905; sensitivity, 76.2%; specificity, 74.1%), and RF (AUC, 0.746; 95% CI, 0.622-0.872; sensitivity, 79.3%; specificity, 72.2%). CONCLUSION: This study demonstrated that the high-resolution T2WI-based radiomics model could serve as pretreatment biomarkers in predicting pathological features of rectal cancer.


Assuntos
Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Neoplasias Retais/diagnóstico por imagem , Neoplasias Retais/patologia , Adulto , Idoso , Árvores de Decisões , Feminino , Humanos , Modelos Logísticos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Curva ROC , Neoplasias Retais/cirurgia , Estudos Retrospectivos , Sensibilidade e Especificidade , Máquina de Vetores de Suporte
14.
Discov Oncol ; 15(1): 201, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822860

RESUMO

OBJECTIVE: Mitosis karyorrhexis index (MKI) can reflect the proliferation status of neuroblastoma cells. This study aimed to investigate the contrast-enhanced computed tomography (CECT) radiomics features associated with the MKI status in neuroblastoma. MATERIALS AND METHODS: 246 neuroblastoma patients were retrospectively included and divided into three groups: low-MKI, intermediate-MKI, and high-MKI. They were randomly stratified into a training set and a testing set at a ratio of 8:2. Tumor regions of interest were delineated on arterial-phase CECT images, and radiomics features were extracted. After reducing the dimensionality of the radiomics features, a random forest algorithm was employed to establish a three-class classification model to predict MKI status. RESULTS: The classification model consisted of 5 radiomics features. The mean area under the curve (AUC) of the classification model was 0.916 (95% confidence interval (CI) 0.913-0.921) in the training set and 0.858 (95% CI 0.841-0.864) in the testing set. Specifically, the classification model achieved AUCs of 0.928 (95% CI 0.927-0.934), 0.915 (95% CI 0.912-0.919), and 0.901 (95% CI 0.900-0.909) for predicting low-MKI, intermediate-MKI, and high-MKI, respectively, in the training set. In the testing set, the classification model achieved AUCs of 0.873 (95% CI 0.859-0.882), 0.860 (95% CI 0.852-0.872), and 0.820 (95% CI 0.813-0.839) for predicting low-MKI, intermediate-MKI, and high-MKI, respectively. CONCLUSIONS: CECT radiomics features were found to be correlated with MKI status and are helpful for reflecting the proliferation status of neuroblastoma cells.

15.
Acad Radiol ; 31(2): 617-627, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37330356

RESUMO

RATIONALE AND OBJECTIVES: Ki67 proliferation index is associated with more aggressive tumor behavior and recurrence of pituitary adenomas (PAs). Recently, radiomics and deep learning have been introduced into the study of pituitary tumors. The present study aimed to investigate the feasibility of predicting the Ki67 proliferation index of PAs using the deep segmentation network and radiomics analysis based on multiparameter MRI. MATERIALS AND METHODS: First, the cfVB-Net autosegmentation model was trained; subsequently, its performance was evaluated in terms of the dice similarity coefficient (DSC). In the present study, 1214 patients were classified into the high Ki67 expression group (HG) and the low Ki67 expression group (LG). Analyses of three classification models based on radiomics features were performed to distinguish HG from LG. Clinical factors, imaging features, and Radscores were collectively used to create a nomogram in order to effectively predict Ki67 expression. RESULTS: The cfVB-Net segmentation model demonstrated good performance (DSC: 0.723-0.930). Overall, 18, 15, and 11 optimal features in contrast-enhanced (CE) T1WI, T1WI, and T2WI were obtained for differentiating between HG and LG, respectively. Notably, the best results were presented in the bagging decision tree when CE T1WI and T1WI were combined (area under the receiver operating characteristic curve: training set, 0.927; validation set, 0.831; and independent testing set, 0.825). In the nomogram, age, Hardy' grade, and Radscores were identified as risk predictors of high Ki67 expression. CONCLUSION: The deep segmentation network and radiomics analysis based on multiparameter MRI exhibited good performance and clinical application value in predicting the expression of Ki67 in PAs.


Assuntos
Adenoma , Neoplasias Hipofisárias , Humanos , Neoplasias Hipofisárias/diagnóstico por imagem , Radiômica , Antígeno Ki-67 , Imageamento por Ressonância Magnética , Adenoma/diagnóstico por imagem , Adenoma/cirurgia , Estudos Retrospectivos
16.
Front Med (Lausanne) ; 11: 1305565, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38283620

RESUMO

Purpose: Early and rapid diagnosis of mild cognitive impairment (MCI) has important clinical value in improving the prognosis of Alzheimer's disease (AD). The hippocampus and parahippocampal gyrus play crucial roles in the occurrence of cognitive function decline. In this study, deep learning and radiomics techniques were used to automatically detect MCI from healthy controls (HCs). Method: This study included 115 MCI patients and 133 normal individuals with 3D-T1 weighted MR structural images from the ADNI database. The identification and segmentation of the hippocampus and parahippocampal gyrus were automatically performed with a VB-net, and radiomics features were extracted. Relief, Minimum Redundancy Maximum Correlation, Recursive Feature Elimination and the minimum absolute shrinkage and selection operator (LASSO) were used to reduce the dimensionality and select the optimal features. Five independent machine learning classifiers including Support Vector Machine (SVM), Random forest (RF), Logistic Regression (LR), Bagging Decision Tree (BDT), and Gaussian Process (GP) were trained on the training set, and validated on the testing set to detect the MCI. The Delong test was used to assess the performance of different models. Result: Our VB-net could automatically identify and segment the bilateral hippocampus and parahippocampal gyrus. After four steps of feature dimensionality reduction, the GP models based on combined features (11 features from the hippocampus, and 4 features from the parahippocampal gyrus) showed the best performance for the MCI and normal control subject discrimination. The AUC of the training set and test set were 0.954 (95% CI: 0.929-0.979) and 0.866 (95% CI: 0.757-0.976), respectively. Decision curve analysis showed that the clinical benefit of the line graph model was high. Conclusion: The GP classifier based on 15 radiomics features of bilateral hippocampal and parahippocampal gyrus could detect MCI from normal controls with high accuracy based on conventional MR images. Our fully automatic model could rapidly process the MRI data and give results in 1 minute, which provided important clinical value in assisted diagnosis.

17.
J Imaging Inform Med ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844718

RESUMO

This study aims to investigate the feasibility of preoperatively predicting histological subtypes of pituitary neuroendocrine tumors (PitNETs) using machine learning and radiomics based on multiparameter MRI. Patients with PitNETs from January 2016 to May 2022 were retrospectively enrolled from four medical centers. A cfVB-Net network was used to automatically segment PitNET multiparameter MRI. Radiomics features were extracted from the MRI, and the radiomics score (Radscore) of each patient was calculated. To predict histological subtypes, the Gaussian process (GP) machine learning classifier based on radiomics features was performed. Multi-classification (six-class histological subtype) and binary classification (PRL vs. non-PRL) GP model was constructed. Then, a clinical-radiomics nomogram combining clinical factors and Radscores was constructed using the multivariate logistic regression analysis. The performance of the models was evaluated using receiver operating characteristic (ROC) curves. The PitNET auto-segmentation model eventually achieved the mean Dice similarity coefficient of 0.888 in 1206 patients (mean age 49.3 ± SD years, 52% female). In the multi-classification model, the GP of T2WI got the best area under the ROC curve (AUC), with 0.791, 0.801, and 0.711 in the training, validation, and external testing set, respectively. In the binary classification model, the GP of T2WI combined with CE T1WI demonstrated good performance, with AUC of 0.936, 0.882, and 0.791 in training, validation, and external testing sets, respectively. In the clinical-radiomics nomogram, Radscores and Hardy' grade were identified as predictors for PRL expression. Machine learning and radiomics analysis based on multiparameter MRI exhibited high efficiency and clinical application value in predicting the PitNET histological subtypes.

18.
Front Oncol ; 14: 1345576, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38577327

RESUMO

Objective: To evaluate the value of a nomogram combined MRI Diffusion Weighted Imaging (DWI) and clinical features to predict the treatment response of Neoadjuvant Chemotherapy (NAC) in patients with osteosarcoma. Methods: A retrospective analysis was conducted on 209 osteosarcoma patients admitted into two bone cancer treatment centers (133 males, 76females; mean age 16.31 ± 11.42 years) from January 2016 to January 2022. Patients were classified as pathological good responders (pGRs) if postoperative histopathological examination revealed ≥90% tumor necrosis, and non-pGRs if <90%. Their clinical features were subjected to univariate and multivariate analysis, and features with statistically significance were utilized to construct a clinical signature using machine learning algorithms. Apparent diffusion coefficient (ADC) values pre-NAC (ADC 0) and post two chemotherapy cycles (ADC 1) were recorded. Regions of interest (ROIs) were delineated from pre-treatment DWI images (b=1000 s/mm²) for radiomic features extraction. Variance thresholding, SelectKBest, and LASSO regression were used to select features with strong relevance, and three machine learning models (Logistic Regression, RandomForest and XGBoost) were used to construct radiomics signatures for predicting treatment response. Finally, the clinical and radiomics signatures were integrated to establish a comprehensive nomogram model. Predictive performance was assessed using ROC curve analysis, with model clinical utility appraised through AUC and decision curve analysis (DCA). Results: Of the 209patients, 51 (24.4%) were pGRs, while 158 (75.6%) were non-pGRs. No significant ADC1 difference was observed between groups (P>0.05), but pGRs had a higher ADC 0 (P<0.01). ROC analysis indicated an AUC of 0.681 (95% CI: 0.482-0.862) for ADC 0 at the threshold of ≥1.37×10-3 mm²/s, achieving 74.7% sensitivity and 75.7% specificity. The clinical and radiomics models reached AUCs of 0.669 (95% CI: 0.401-0.826) and 0.768 (95% CI: 0.681-0.922) respectively in the test set. The combined nomogram displayed superior discrimination with an AUC of 0.848 (95% CI: 0.668-0.951) and 75.8% accuracy. The DCA suggested the clinical utility of the nomogram. Conclusion: The nomogram based on combined radiomics and clinical features outperformed standalone clinical or radiomics model, offering enhanced accuracy in evaluating NAC response in osteosarcoma. It held significant promise for clinical applications.

19.
J Cancer ; 15(6): 1536-1550, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38370380

RESUMO

BACKGROUND: Advanced stomach adenocarcinoma (ASTAD) is a highly malignant and prognostically poor stage of gastric cancer. Recently, long noncoding RNA (lncRNA) was found to play a crucial role, including as competing endogenous RNA (ceRNA) in cancer. However, studies on large-scale sample in ASTAD are still lacking, thus we constructed the ceRNA network of ASTAD to explore its molecular mechanism. METHODS: We compared the expression of mRNAs, lncRNAs and miRNAs between ASTAD and normal tissues utilizing RNA-Seq and miRNA-seq Data from The Cancer Genome Atlas (TCGA). GO and KEGG enrichment analysis were executed for annotating the functions of differentially expressed mRNAs. Subsequently, we investigated the expression correlations between the differentially expressed lncRNAs and their respective mRNAs by constructing a ceRNA network. Kaplan-Meier survival analysis was used to assess the relationship between high/low risk scores based on this network with patient prognosis in TCGA training cohort and GSE15459 validation cohort. In vitro functional assays were employed to verify the cancer-promoting effects of key lncRNAs in the ceRNA network and their possible mechanisms. RESULTS: In ASTAD tissues, a total of 176 lncRNAs, 124 miRNAs, and 2205 mRNAs were identified as differentially expressed. Our constructed ceRNA network consisted 6 differentially expressed lncRNAs (PVT1, MAGI2-AS3, KCNQ1OT1, LINC02086, AC125807.2 and LINC02535), 25 miRNAs and 130 mRNAs, and the risk score derived from these lincRNAs could predict ASTAD patient outcomes. Key lncRNA LINC02086 was experimentally verified to enhance proliferation and migration of gastric cancer cells by competitively binding to miR-93a-5p with MMP3. CONCLUSION: Our comprehensive ceRNA network for ASTAD provides valuable insights into its molecular mechanisms, and LINC02086 may be used as an innovative target for clinical treatment.

20.
Life Sci ; 336: 122304, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38016578

RESUMO

Bile acid, the final product of cholesterol breakdown, functions as a complex regulator and signaling factor in human metabolism. Chronic metabolic diseases pose significant medical challenges. Growing research underscores bile acids' capacity to enhance metabolism via diverse pathways, regulating disorders and offering treatment potential. Numerous bile-acid-triggered pathways have become treatment targets. This review outlines bile acid synthesis, its role as a signal in chronic metabolic diseases, and highlights its interaction with gut microbiota in different metabolic conditions. Exploring host-bacteria-bile acid links emerges as a valuable future research direction with clinical implications.


Assuntos
Microbioma Gastrointestinal , Doenças Metabólicas , Humanos , Ácidos e Sais Biliares , Transdução de Sinais , Lipogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA