Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Br J Cancer ; 130(9): 1517-1528, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38459187

RESUMO

BACKGROUND: Circß-catenin, our first reported circRNA, has been reported to mediate tumorigenesis in various cancers. However, its biological functions and underlying mechanisms in colorectal cancer (CRC) remain unknown. METHODS: The qRT-PCR examination was used to detect the expression of circß-catenin, miR-197-3p, and CTNND1 in cells and human tissues. Western blot was conducted to detect the protein expression levels. The biological function of circß-catenin was verified by MTT, colony formation, wound healing, and transwell assays. The in vivo effects of circß-catenin were verified by nude mice xenograft and metastasis models. The regulatory network of circß-catenin/miR-197-3p/CTNND1 was confirmed via dual-luciferase reporter and RIP assays. RESULTS: In the present study, circß-catenin was found to promote CRC cell proliferation and metastasis in vitro and in vivo. Mechanistically, circß-catenin served as miRNA decoy to directly bind to miR-197-3p, then antagonized the repression of the target gene CTNND1, and eventually promoted the malignant phenotype of CRC. More interestingly, the inverted repeated Alu pairs termed AluJb1/2 and AluY facilitated the biogenesis of circß-catenin, which could be partially reversed by EIF4A3 binding to Alu element AluJb2. CONCLUSIONS: Our findings illustrated a novel mechanism of circß-catenin in modulating CRC tumorigenesis and metastasis, which provides a potential therapeutic target for CRC patients.


Assuntos
Proliferação de Células , Neoplasias Colorretais , Progressão da Doença , Fator de Iniciação 4A em Eucariotos , Camundongos Nus , MicroRNAs , RNA Circular , beta Catenina , MicroRNAs/genética , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , RNA Circular/genética , Animais , Camundongos , beta Catenina/metabolismo , beta Catenina/genética , Proliferação de Células/genética , Fator de Iniciação 4A em Eucariotos/genética , Fator de Iniciação 4A em Eucariotos/metabolismo , delta Catenina , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Masculino , Feminino , Movimento Celular/genética , Camundongos Endogâmicos BALB C
2.
J Neuroinflammation ; 20(1): 19, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36717922

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a chronic neurodegenerative disease characterized by progressive cognitive dysfunctions and behavioral impairments. Patchouli alcohol (PA), isolated from Pogostemonis Herba, exhibits multiple pharmacological properties, including neuroprotective effects. This study aimed to investigate the therapeutic effects of PA against AD using the TgCRND8 transgenic AD mouse model, and to explore the underlying mechanisms targeting CCAAT/enhancer-binding protein ß/asparagine endopeptidase (C/EBPß/AEP) signaling pathway. METHODS: After genotyping to confirm the transgenicity, drug treatments were administered intragastrically once daily to 3-month-old TgCRND8 mice for 4 consecutive months. Several behavioral tests were applied to assess different aspects of neurological functions. Then the brain and colon tissues were harvested for in-depth mechanistic studies. To further verify whether PA exerts anti-AD effects via modulating C/EBPß/AEP signaling pathway in TgCRND8 mice, adeno-associated virus (AAV) vectors encoding CEBP/ß were bilaterally injected into the hippocampal CA1 region in TgCRND8 mice to overexpress C/EBPß. Additionally, the fecal microbiota transplantation (FMT) experiment was performed to verify the potential role of gut microbiota on the anti-AD effects of PA. RESULTS: Our results showed that PA treatment significantly improved activities of daily living (ADL), ameliorated the anxiety-related behavioral deficits and cognitive impairments in TgCRND8 mice. PA modulated the amyloid precursor protein (APP) processing. PA also markedly reduced the levels of beta-amyloid (Aß) 40 and Aß42, suppressed Aß plaque burdens, inhibited tau protein hyperphosphorylation at several sites and relieved neuroinflammation in the brains of TgCRND8 mice. Moreover, PA restored gut dysbiosis and inhibited the activation of the C/EBPß/AEP signaling pathway in the brain and colon tissues of TgCRND8 mice. Interestingly, PA strikingly alleviated the AD-like pathologies induced by the overexpression of C/EBPß in TgCRND8 mice. Additionally, the FMT of fecal microbiota from the PA-treated TgCRND8 mice significantly alleviated the cognitive impairments and AD-like pathologies in the germ-free TgCRND8 mice. CONCLUSION: All these findings amply demonstrated that PA could ameliorate the cognitive deficits in TgCRND8 mice via suppressing Aß plaques deposition, hyperphosphorylation of tau protein, neuroinflammation and gut dysbiosis through inhibiting the activation of C/EBPß/AEP pathway, suggesting that PA is a promising naturally occurring chemical worthy of further development into the pharmaceutical treatment of AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Microbioma Gastrointestinal , Doenças Neurodegenerativas , Humanos , Camundongos , Animais , Doença de Alzheimer/terapia , Doença de Alzheimer/tratamento farmacológico , Camundongos Transgênicos , Proteínas tau/metabolismo , Doenças Neuroinflamatórias , Atividades Cotidianas , Disbiose , Disfunção Cognitiva/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Cognição , Modelos Animais de Doenças
3.
Int J Mol Sci ; 24(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37446120

RESUMO

Autophagy plays a complex impact role in tumor initiation and development. It serves as a double-edged sword by supporting cell survival in certain situations while also triggering autophagic cell death in specific cellular contexts. Understanding the intricate functions and mechanisms of autophagy in tumors is crucial for guiding clinical approaches to cancer treatment. Recent studies highlight its significance in various aspects of cancer biology. Autophagy enables cancer cells to adapt to and survive unfavorable conditions by recycling cellular components. However, excessive or prolonged autophagy can lead to the self-destruction of cancer cells via a process known as autophagic cell death. Unraveling the molecular mechanisms underlying autophagy regulation in cancer is crucial for the development of targeted therapeutic interventions. In this review, we seek to present a comprehensive summary of current knowledge regarding autophagy, its impact on cancer cell survival and death, and the molecular mechanisms involved in the modulation of autophagy for cancer therapy.


Assuntos
Autofagia , Neoplasias , Humanos , Morte Celular Autofágica , Autofagia/efeitos dos fármacos , Autofagia/fisiologia , Sobrevivência Celular , Transformação Celular Neoplásica , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
4.
Bioorg Chem ; 119: 105538, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34929516

RESUMO

Baicalin has distinct therapeutic effects in various skin diseases animal models such as atopic dermatitis (AD) and psoriasis. In this study, we aimed to investigate the anti-atopic dermatitis (AD) effects of baicalin in 2,4-dinitrochlorobenzene (DNCB)-treated mice. Female BALB/c mice treated with DNCB to induce AD-like skin lesions and orally administrated with baicalin daily for 14 consecutive days. Baicalin significantly inhibited dorsal skin thickness and trans-epidermal water loss and epidermal thickness in dorsal skin. In addition, baicalin also significantly up-regulated the protein expressions of filaggrin, involucrin, and loricrin, but inhibited the inflammatory response and the activation of NF-κB and JAK/STAT pathways in the dorsal skin of the DNCB-treated mice. Furthermore, baicalin significantly restored the abundance of probiotics in the gut microbiota of the DNCB-treated mice. Pseudo germ-free (GF) DNCB-treated mice receiving fecal microbiota from baicalin donors reduced the dorsal skin thickness and skin EASI score, and inhibited the release of IgE, histamine, TNF-α and IL-4 in serum of mice. In summary, baicalin ameliorates AD-like skin lesions induced by DNCB in mice via regulation of the Th1/Th2 balance, improvement of skin barrier function and modulation of gut dysbiosis, and inhibition of inflammation through suppressing the activation of NF-κB and JAK/STAT pathways.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Dermatite Atópica/tratamento farmacológico , Flavonoides/farmacologia , Pele/efeitos dos fármacos , Animais , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/isolamento & purificação , Dermatite Atópica/induzido quimicamente , Dinitroclorobenzeno , Relação Dose-Resposta a Droga , Feminino , Flavonoides/química , Flavonoides/isolamento & purificação , Microbioma Gastrointestinal/efeitos dos fármacos , Janus Quinases/antagonistas & inibidores , Janus Quinases/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Molecular , Raízes de Plantas/química , Fatores de Transcrição STAT/antagonistas & inibidores , Fatores de Transcrição STAT/metabolismo , Scutellaria baicalensis/química , Pele/metabolismo , Pele/patologia , Relação Estrutura-Atividade
5.
Phytother Res ; 35(5): 2758-2772, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33440458

RESUMO

Our previous study revealed that Epimedii Folium (EF) and Codonopsis Radix (CNR) significantly promoted tumor growth on a subcutaneous mouse model of prostate cancer (PCa) via enhancing the mRNA and protein expressions of androgen receptor (AR), while Astragali Radix (AGR) inhibited tumor growth via suppressing the protein expression of AR. In the present study, we aimed to investigate the potential interactions between EF, CNR or AGR and AR antagonist (abiraterone acetate [ABI]) on the tumor growth using subcutaneous and orthotopic PCa mouse models. EF, CNR, AGR and ABI were intragastrically given to mice once every 2 days for 4 weeks. The pharmacokinetics of ABI were evaluated in the plasma of rats when combined with EF, CNR, or AGR. Our results demonstrated that EF or CNR could weaken the anti-tumor effects of ABI via increasing the AR expression involving activation of the PI3K/AKT and Rb/E2F pathways and decreasing the bioavailability of ABI, while AGR could enhance the anti-tumor effects of ABI through suppressing the AR expression via inhibiting the activations of PI3K/AKT and Rb/E2F pathways and increasing the bioavailability of ABI. These findings imply that cautions should be exercised when prescribing EF and CNR for PCa patients.

6.
Molecules ; 26(9)2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-34064330

RESUMO

Several genetic studies have identified a rare variant of triggering receptor expressed on myeloid cells 2 (TREM2) as a risk factor for Alzheimer's disease (AD). However, findings on the effects of TREM2 on Aß deposition are quite inconsistent in animal studies, requiring further investigation. In this study, we investigated whether elevation of TREM2 mitigates Aß pathology in TgCRND8 mice. We found that peripheral nerve injury resulted in a robust elevation of TREM2 exclusively in reactive microglia in the ipsilateral spinal cord of aged TgCRND8 mice at the age of 20 months. TREM2 expression appeared on day 1 post-injury and the upregulation was maintained for at least 28 days. Compared to the contralateral side, neither amyloid beta plaque load nor soluble Aß40 and Aß42 levels were attenuated upon TREM2 induction. We further showed direct evidence that TREM2 elevation in reactive microglia did not affect amyloid-ß pathology in plaque-bearing TgCRND8 mice by applying anti-TREM2 neutralizing antibody to selectively block TREM2. Our results question the ability of TREM2 to ameliorate established Aß pathology, discouraging future development of disease-modifying pharmacological treatments targeting TREM2 in the late stage of AD.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Glicoproteínas de Membrana/metabolismo , Microglia/metabolismo , Microglia/patologia , Receptores Imunológicos/metabolismo , Envelhecimento/patologia , Animais , Plexo Braquial , Proteínas de Ligação ao Cálcio/metabolismo , Modelos Animais de Doenças , Masculino , Camundongos Transgênicos , Proteínas dos Microfilamentos/metabolismo , Nervos Periféricos/patologia , Medula Espinal/metabolismo , Medula Espinal/patologia , Corno Dorsal da Medula Espinal/patologia
7.
FASEB J ; 33(9): 10393-10408, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31233346

RESUMO

Isorhynchophylline (IRN), an oxindole alkaloid isolated from Uncaria rhynchophylla, elicited distinct antidepressant-like activity in mice. The present study aimed to investigate the antidepressant-like effects of IRN in chronic unpredictable mild stress (CUMS)-induced depressive-like behaviors in mice and to illustrate its possible mechanisms of action. The mice were subjected to CUMS for 6 wk and administered with IRN (20 or 40 mg/kg) daily by oral gavage for 3 wk. The PI3K/protein kinase B (Akt) inhibitor and glycogen synthase kinase-3ß (GSK-3ß) inhibitors were used to determine the involvement of the PI3K/Akt/GSK-3ß pathway in the antidepressant-like effects of IRN in the mice. The results showed that CUMS caused depression-like behaviors in the mice, such as behavioral despair by the forced swim test (FST) and anhedonia by the sucrose preference test. In addition, CUMS could significantly reduce the levels of nerve growth factor and brain-derived neurotrophic factor but markedly increase the release of TNF-α and IL-6 in the hippocampus and cerebral cortex of the mice. Western blotting analysis showed that CUMS markedly suppressed the levels of phosphorylated GSK-3ß (Ser9) and phosphorylated Akt (Ser473) but significantly enhanced the translocation of NF-κB p65 from cytosol to nuclei in the hippocampus and cerebral cortex of the mice. CUMS could also significantly increase the NF-κB binding activity in the hippocampus and cerebral cortex of the mice, whereas IRN treatment could significantly reverse the behavioral and biochemical changes induced by CUMS in the mice. Moreover, the antidepressant-like effect of IRN was completely abolished by the PI3K/Akt inhibitor. Combination treatment with IRN and GSK-3ß inhibitors in the mice exerted a synergistic anti-immobility action in the FST. The results of mechanistic investigations indicated that the antidepressant-like action of IRN was mediated, at least in part, by enhancing neurotrophins and attenuating neuroinflammation via modulating the PI3K/Akt/GSK-3ß pathway.-Xian, Y.-F., Ip, S.-P., Li, H.-Q., Qu, C., Su, Z.-R., Chen, J.-N., Lin, Z.-X. Isorhynchophylline exerts antidepressant-like effects in mice via modulating neuroinflammation and neurotrophins: involvement of the PI3K/Akt/GSK-3ß signaling pathway.


Assuntos
Depressão/tratamento farmacológico , Regulação da Expressão Gênica/efeitos dos fármacos , Glicogênio Sintase Quinase 3 beta/metabolismo , Inflamação/tratamento farmacológico , Oxindóis/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Antidepressivos/farmacologia , Depressão/imunologia , Depressão/metabolismo , Depressão/patologia , Glicogênio Sintase Quinase 3 beta/genética , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais , Estresse Psicológico
8.
Brain Behav Immun ; 89: 628-640, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32739364

RESUMO

Beta amyloid (Aß) is a key component of parenchymal Aß plaques and vascular Aß fibrils, which lead to cerebral amyloid angiopathy (CAA) in Alzheimer's disease (AD). Recent studies have revealed that Aß contained in the cerebrospinal fluid (CSF) can re-enter into brain through paravascular spaces. However, whether Aß in CSF may act as a constant source of pathogenic Aß in AD is still unclear. This study aimed to examine whether Aß pathology could be worsened when CSF Aß level was enhanced by intra-cisternal infusion of aged brain extract containing abundant Aß in TgCRND8 host mice. TgCRND8 mouse is an AD animal model which develops predominant parenchymal Aß plaques in the brain at as early as 3 months of age. Here, we showed that single intracisternal injection of Aß seeds into TgCRND8 mice before the presence of Aß pathology induced robust prion-like propagation of CAA within 90 days. The induced CAA is mainly distributed in the cerebral cortex, hippocampus and thalamus of TgCRND8 mice. Surprisingly, despite the robust increase in CAA levels, the TgCRND8 mice had a marked decrease in parenchymal Aß plaques and the plaques related neuroinflammation in the brains compared with the control mice. These results amply indicate that Aß in CSF may act as a source of Aß contributing to the growth of vascular Aß deposits in CAA. Our findings provide experimental evidence to unravel the mechanisms of CAA formation and the potential of targeting CSF Aß for CAA.


Assuntos
Doença de Alzheimer , Angiopatia Amiloide Cerebral , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/metabolismo , Camundongos , Camundongos Transgênicos , Placa Amiloide
9.
Brain Behav Immun ; 82: 264-278, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31476414

RESUMO

Isorhynchophylline (IRN) has been demonstrated to have distinct anti-Alzheimer's disease (AD) activity in several animal models of AD. In this study, we aimed at evaluating the preventive effect of IRN on the cognitive deficits and amyloid pathology in TgCRND8 mice. Male TgCRND8 mice were administered with IRN (20 or 40 mg/kg) by oral gavage daily for 4 months, followed by assessing the spatial learning and memory functions with the Radial Arm Maze (RAM) test. Brain tissues were determined immunohistochemically or biochemically for changes in amyloid pathology, tau hyperphosphorylation and neuroinflammation. Our results revealed that IRN (40 mg/kg) significantly ameliorated cognitive deficits in TgCRND8 mice. In addition, IRN (40 mg/kg) markedly reduced the levels of Aß40, Aß42 and tumor necrosis factor (TNF-α), interleukin 6 (IL-6) and IL-1ß, and modulated the amyloid precursor protein (APP) processing and phosphorylation by altering the protein expressions of ß-site APP cleaving enzyme-1 (BACE-1), phosphorylated APP (Thr668), presenilin-1 (PS-1) and anterior pharynx-defective-1 (APH-1), as well as insulin degrading enzyme (IDE), a major Aß-degrading enzyme. IRN was also found to inhibit the phosphorylation of tau at the sites of Thr205 and Ser396. Immunofluorescence showed that IRN reduced the Aß deposition, and suppressed the activation of microglia (Iba-1) and astrocytes (GFAP) in the cerebral cortex and hippocampus of TgCRND8 mice. Furthermore, IRN was able to attenuate the ratios of p-c-Jun/c-Jun and p-JNK/JNK in the brains of TgCRND8 mice. IRN also showed marked inhibitory effect on JNK signaling pathway in the Aß-treated rat primary hippocampus neurons. We conclude that IRN improves cognitive impairment in TgCRND8 transgenic mice via reducing Aß generation and deposition, tau hyperphosphorylation and neuroinflammation through inhibiting the activation of JNK signaling pathway, and has good potential for further development into pharmacological treatment for AD.


Assuntos
Doença de Alzheimer/fisiopatologia , Disfunção Cognitiva/tratamento farmacológico , Oxindóis/farmacologia , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Encéfalo/metabolismo , Transtornos Cognitivos/metabolismo , Disfunção Cognitiva/metabolismo , Modelos Animais de Doenças , Feminino , Hipocampo/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neuroimunomodulação/fisiologia , Presenilina-1/metabolismo , Proteínas tau/metabolismo
10.
Molecules ; 23(9)2018 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-30149578

RESUMO

The genus Sanguisorba, which contains about 30 species around the world and seven species in China, is the source of the medicinal plant Sanguisorba officinalis, which is commonly used as a hemostatic agent as well as to treat burns and scalds. Here we report the complete chloroplast (cp) genome sequences of four Sanguisorba species (S. officinalis, S. filiformis, S. stipulata, and S. tenuifolia var. alba). These four Sanguisorba cp genomes exhibit typical quadripartite and circular structures, and are 154,282 to 155,479 bp in length, consisting of large single-copy regions (LSC; 84,405⁻85,557 bp), small single-copy regions (SSC; 18,550⁻18,768 bp), and a pair of inverted repeats (IRs; 25,576⁻25,615 bp). The average GC content was ~37.24%. The four Sanguisorba cp genomes harbored 112 different genes arranged in the same order; these identical sections include 78 protein-coding genes, 30 tRNA genes, and four rRNA genes, if duplicated genes in IR regions are counted only once. A total of 39⁻53 long repeats and 79⁻91 simple sequence repeats (SSRs) were identified in the four Sanguisorba cp genomes, which provides opportunities for future studies of the population genetics of Sanguisorba medicinal plants. A phylogenetic analysis using the maximum parsimony (MP) method strongly supports a close relationship between S. officinalis and S. tenuifolia var. alba, followed by S. stipulata, and finally S. filiformis. The availability of these cp genomes provides valuable genetic information for future studies of Sanguisorba identification and provides insights into the evolution of the genus Sanguisorba.


Assuntos
Genoma de Cloroplastos , Sanguisorba/classificação , Sanguisorba/genética , Composição de Bases , Códon , Biologia Computacional/métodos , Éxons , Variação Genética , Genômica/métodos , Íntrons , Repetições de Microssatélites , Anotação de Sequência Molecular , Filogenia
11.
Neurochem Res ; 42(2): 678-685, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27900600

RESUMO

Isorhynchophylline (IRN), an oxindole alkaloid, has been identified as the main active ingredient responsible for the biological activities of Uncaria rhynchophylla (Miq) Miq ex Havil. (Rubiaceae). Previous studies in our laboratory have revealed that IRN possesses potent neuroprotective effects in different models of Alzheimer's disease. However, the antidepressant-like effects of IRN are remained unclear. The present study aims to evaluate the antidepressant-like effects of IRN. The antidepressant-like effects of IRN was determined by using animal models of depression including forced swimming and tail suspension tests. The acting mechanism was explored by determining the effect of IRN on the levels of monoamine neurotransmitters and the activities of monoamine oxidases. Intragastric administration of IRN at 10, 20 and 40 mg/kg for 7 days caused a significant reduction of immobility time in both forced swimming and tail suspension tests, while IRN did not stimulate locomotor activity in the open-field test. In addition, IRN treatment antagonized reserpine-induced ptosis and significantly enhanced the levels of monoamine neurotransmitters including norepinephrine (NE) and 5-hydroxytryptamine (5-HT), and the activity of monoamine oxidase A (MAO-A) in the hippocampus and frontal cortex of mice. These results suggest that the antidepressant-like effects of IRN are mediated, at least in part, by the inhibition of monoamine oxidases.


Assuntos
Antidepressivos/uso terapêutico , Depressão/tratamento farmacológico , Depressão/psicologia , Alcaloides Indólicos/uso terapêutico , Uncaria , Animais , Antidepressivos/farmacologia , Depressão/metabolismo , Relação Dose-Resposta a Droga , Elevação dos Membros Posteriores/efeitos adversos , Elevação dos Membros Posteriores/psicologia , Imobilização/efeitos adversos , Alcaloides Indólicos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Oxindóis , Distribuição Aleatória , Natação/psicologia , Resultado do Tratamento
12.
Cell Mol Neurobiol ; 34(3): 403-8, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24401942

RESUMO

Previous studies in our laboratory have demonstrated that piperine produced antidepressant-like action in various mouse models of behavioral despair, which was related to the serotonergic system. The present study aimed to examine the behavioral and biochemical effects of piperine in rats exposed to chronic unpredictable mild stress (CUMS). The results showed that CUMS caused depression-like behavior in rats, as indicated by the significant decrease in sucrose consumption and increase in immobility time in the forced swim test. In addition, it was found that serotonin (5-HT) and brain-derived neurotrophic factor (BDNF) contents in the hippocampus and frontal cortex were significantly decreased in CUMS-treated rats. Treating the animals with piperine significantly suppressed behavioral and biochemical changes induced by CUMS. The results suggest that piperine produces an antidepressant-like effect in CUMS-treated rats, which is possibly mediated by increasing 5-HT and BDNF contents in selective brain tissues.


Assuntos
Alcaloides/uso terapêutico , Antidepressivos/uso terapêutico , Benzodioxóis/uso terapêutico , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Piperidinas/uso terapêutico , Alcamidas Poli-Insaturadas/uso terapêutico , Serotonina/metabolismo , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/metabolismo , Animais , Doença Crônica , Masculino , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Estresse Psicológico/psicologia
13.
J Ethnopharmacol ; 328: 118113, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548119

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Alzheimer's disease (AD) is a progressive neurodegenerative disease. Tianma-Gouteng Pair (TGP), commonly prescribed as a pair-herbs, can be found in many Chinese medicine formulae to treat brain diseases. However, the neuroprotective effects and molecular mechanisms of TGP remained unexplored. AIM OF THE STUDY: This study investigated the difference between the TgCRND8 and 5 × FAD transgenic mice, the anti-AD effects of TGP, and underlying molecular mechanisms of TGP against AD through the two mouse models. METHODS: Briefly, three-month-old TgCRND8 and 5 × FAD mice were orally administered with TGP for 4 and 6 months, respectively. Behavioral tests were carried out to determine the neuropsychological functions. Moreover, immunofluorescence and western blotting assays were undertaken to reveal the molecular mechanisms of TGP. RESULTS: Although TgCRND8 and 5 × FAD mice had different beta-amyloid (Aß) burdens, neuroinflammation status, and cognition impairments, TGP exerted neuroprotective effects against AD in the two models. In detail, behavioral tests revealed that TGP treatment markedly ameliorated the anxiety-like behavior, attenuated the recognition memory deficits, and increased the spatial learning ability as well as the reference memory of TgCRND8 and 5 × FAD mice. Moreover, TGP treatment could regulate the beta-amyloid precursor protein (APP) processing by inhibiting the Aß production enzymes such as ß- and γ-secretases and activating Aß degrading enzyme to reduce Aß accumulation. In addition, TGP reduced the Aß42 level, the ratio of Aß42/Αß40, Aß accumulation, and tau hyperphosphorylation in both the 5 × FAD and TgCRND8 mouse models. Furthermore, TGP ameliorated neuroinflammation by decreasing the densities of activated microglia and astrocytes, and inhibiting the production of inflammatory cytokines. TGP upregulated the SIRT1 and AMPK, and downregulated sterol response element binding protein 2 (SREBP2) in the brain of TgCRND8 mice and deactivation of the EPhA4 and c-Abl in the brain tissues of 5 × FAD mice. CONCLUSION: Our experiments for the first time revealed the neuroprotective effects and molecular mechanism of TGP on 5 × FAD and TgCRND8 transgenic mouse models of different AD stages. TGP decreased the level of Aß aggregates, improved the tauopathy, and reduced the neuroinflammation by regulation of the SIRT1/AMPK/SREBP2 axis and deactivation of EPhA4/c-Abl signaling pathway in the brains of TgCRND8 and 5 × FAD mice, respectively. All these findings unequivocally confirmed that the TGP would be promising in developing into an anti-AD therapeutic pharmaceutical.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Camundongos , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Camundongos Transgênicos , Sirtuína 1 , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Doenças Neuroinflamatórias , Proteínas Quinases Ativadas por AMP , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Cognição , Modelos Animais de Doenças
14.
Chin Med ; 19(1): 10, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38229198

RESUMO

BACKGROUND: Qing-Zao-Jiu-Fei Decoction (QZJFD) is a famous herbal formula commonly prescribed for the treatment of lung-related diseases in the ancient and modern times. Trichosanthis Fructus (TF) and Fritillariae Thunbergii Bulbus (FTB) are widely used for treatment of cough and pulmonary disease. In order to identify a more effective formula for treatment of pulmonary fibrosis, we intend to add TF and FTB in QZJFD to form a modified QZJFD (MQZJFD). In this study, we aims to explore MQZJFD as an innovative therapeutic agent for pulmonary fibrosis using bleomycin (BLM)-treated rats and to unravel the underlying molecular mechanisms. METHODS: BLM was given to SD rats by intra-tracheal administration of a single dose of BLM (5 mg/kg). QZJFD (3 g/kg) and MQZJFD (1, 2 and 4 g/kg) was given intragastrically daily to rats for 14 days (from day 15 to 28) after BLM administration for 14 consecutive days. RESULTS: MQZJFD was found to contain 0.29% of amygdalin, 0.020% of lutin, 0.077% of glycyrrhizic acid and 0.047% of chlorogenic acid. BLM treatment could induce collagen deposition in the lung tissues of rats, indicating that the pulmonary fibrosis rat model had been successfully established. MQZJFD have better effects than the original QZJFD in reducing the pulmonary structure damage and collagen deposition of rat lung fibrosis induced by BLM. MQZJFD could reduce the hydroxyproline content in lung tissues of BLM-treated rats. The biomarkers of fibrosis such as matrix metalloproteinase 9 (MMP9), collagen I and α-smooth muscle actin (α-SMA) were remarkably reduced after treatment with MQZJFD. MQZJFD also have anti-oxidant stress effects by inhibiting the level of malondialdehyde (MDA), but enhancing the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), and the level of glutathione (GSH) in the lung tissues of BLM-treated rats. Moreover, the MQZJFD markedly suppressed the over expressions of p-p65/p65 and p-IκBα/IκBα, but upregulated the Nrf2. MQZJFD also suppressed the protein expressions of p-ERK1/2/ERK1/2, p-p38/p38 and p-JNK/JNK in the lung tissues of BLM-treated rats. CONCLUSIONS: MQZJFD could improve the pulmonary fibrosis induced by BLM in rats via inhibiting the fibrosis and oxidative stress via suppressing the activation of NF-κB/Nrf2 and MAPKs pathways.

15.
Chin Med ; 19(1): 81, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38858762

RESUMO

BACKGROUND: Psoriasis is a long-term inflammatory skin disease. A novel herbal formula containing nine Chinese herbal medicines, named Inflammation Skin Disease Formula (ISDF), has been prescribed in clinics for decades. AIMS: To investigate the efficacy and action mechanisms of ISDF on psoriasis using imiquimod (IMQ) and Interleukin-23 (IL-23)-induced models in mice and reveal the pharmacokinetics profile of ISDF in rats. METHODS: Topical administration of IMQ and intradermal injection with IL-23 respectively induced skin lesions like psoriasis on the dorsal area of Balb/c and C57 mice. The mice's body weight, skin thickness, and psoriasis area and severity index (PASI) were assessed weekly. SD rats were used in the pharmacokinetics study and the contents of berberine and baicalin were determined. RESULTS: The PASI scores and epidermal thickness of mice were markedly decreased after ISDF treatment in both models. ISDF treatment significantly decreased the contents of IL-17A and IL-22 in the serum of IMQ- and IL-23-treated mice. Importantly, ISDF markedly downregulated IL-4, IL-6, IL-1ß, and tumor necrosis factor α (TNF-α) gene expression, and the phosphorylation of NF-κB p65, JNK, ERKs and MAPK p38 in IMQ-treated mice. The protein phosphorylation of Jak1, Jak2, Tyk2 and Stat3 was significantly mitigated in the ISDF-treated groups. The absorption of baicalin and berberine of ISDF through the gastrointestinal tract of rats was limited, and their distribution and metabolism in rats were also very slow, which suggested ISDF could be used in the long-term application. CONCLUSIONS: ISDF has a strong anti-psoriatic therapeutic effect on mouse models induced with psoriasis through IMQ and IL-23, which is achieved by inhibiting the activation of the Jak/Stat3-activated IL-23/Th17 axis and the downstream NF-κB signalling and MAPK signalling pathways. ISDF holds great potential to be a therapy for psoriasis and should be further developed for this purpose.

16.
Biomed Pharmacother ; 177: 116977, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38901203

RESUMO

BACKGROUND: Pancreatic cancer (PanCa), ranked as the 4th leading cause of cancer-related death worldwide, exhibits an dismal 5-year survival rate of less than 5 %. Chronic pancreatitis (CP) is a known major risk factor for PanCa. Brusatol (BRT) possesses a wide range of biological functions, including the inhibition of PanCa proliferation. However, its efficacy in halting the progression from CP to pancreatic carcinogenesis remains unexplored. METHODS: We assess the effects of BRT against pancreatic carcinogenesis from CP using an experimentally induced CP model with cerulein, and further evaluate the therapeutic efficacy of BRT on PanCa by employing Krastm4TyjTrp53tm1BrnTg (Pdx1-cre/Esr1*) #Dam/J (KPC) mouse model. RESULTS: Our finding demonstrated that BRT mitigated the severity of cerulein-induced pancreatitis, reduced pancreatic fibrosis and decreased the expression of α-smooth muscle actin (α-SMA), which is a biomarker for pancreatic fibrosis. In addition, BRT exerted effects against cerulein-induced pancreatitis via inactivation of NLRP3 inflammasome. Moreover, BRT significantly inhibited tumor growth and impeded cancer progression. CONCLUSIONS: The observed effect of BRT on impeding pancreatic carcinogenesis through targeting NLRP3 inflammasome suggests its good potential as a potential agent for treatment of PanCa.

17.
Neurochem Res ; 38(5): 951-60, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23420419

RESUMO

The accumulation of extracellular amyloid-ß peptide (Aß) has been considered as one of the important causes of Alzheimer's disease (AD), the most prevalent form of dementia. Hydroxysafflor yellow A (HSYA), a major active chemical component isolated from Carthamus tinctorius L., has been shown to possess neuroprotective actions in various ischemic models in vivo. The present study aimed to investigate the potential protective effect of HSYA against Aß-induced neurotoxicity in cultured rat pheochromocytoma (PC12) cells. The PC12 cells were pretreated with different concentrations (20, 40 and 80 µM) of HSYA for 2 h and then further treated with Aß (20 µM) for 24 h. The results showed that Aß could significantly decrease cell viability, glutathione level, mitochondrial membrane potential and the ratio of Bcl-2/Bax protein expression, while elevate the release of lactate dehydrogenase, the formation of DNA fragmentation, the levels of malondialdehyde and intracellular reactive oxygen species in PC12 cells. However, pretreatment with HSYA could effectively reverse these changes induced by Aß in PC12 cells. Our experimental results demonstrate that HSYA may be a potential neuroprotective agent warranting further development for treatment of AD.


Assuntos
Peptídeos beta-Amiloides/farmacologia , Chalcona/análogos & derivados , Neurônios/efeitos dos fármacos , Quinonas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Chalcona/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Células PC12 , Ratos
18.
Curr Neuropharmacol ; 21(11): 2343-2361, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37533160

RESUMO

BACKGROUND: Brachial plexus avulsion (BPA) animally involves the separation of spinal nerve roots themselves and the correlative spinal cord segment, leading to formidable neuropathic pain of the upper limb. METHODS: The right seventh cervical (C7) ventral and dorsal roots were avulsed to establish a neuropathic pain model in rats. After operation, rats were treated with quercetin (QCN) by intragastric administration for 1 week. The effects of QCN were evaluated using mechanical allodynia tests and biochemical assay kits. RESULTS: QCN treatment significantly attenuated the avulsion-provoked mechanical allodynia, elevated the levels of catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) and total antioxidant capacity (TAC) in the C7 spinal dorsal horn. In addition, QCN administration inhibited the activations of macrophages, microglia and astrocytes in the C6 dorsal root ganglion (DRG) and C6-8 spinal dorsal horn, as well as attenuated the release of purinergic 2X (P2X) receptors in C6 DRG. The molecular mechanism underlying the above alterations was found to be related to the suppression of the PKC/MAPK/NOX signal pathway. To further study the anti-oxidative effects of QCN, we applied QCN on the H2O2-induced BV-2 cells in vitro, and the results attested that QCN significantly ameliorated the H2O2-induced ROS production in BV-2 cells, inhibited the H2O2-induced activation of PKC/MAPK/NOX pathway. CONCLUSION: Our study for the first time provided evidence that QCN was able to attenuate pain hypersensitivity following the C7 spinal root avulsion in rats, and the molecular mechanisms involve the reduction of both neuro-inflammatory infiltration and oxidative stress via suppression of P2X receptors and inhibition of the activation of PKC/MAPK/NOX pathway. The results indicate that QCN is a natural compound with great promise worthy of further development into a novel therapeutic method for the treatment of BPA-induced neuropathic pain.


Assuntos
Plexo Braquial , Neuralgia , Ratos , Animais , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Quercetina/farmacologia , Quercetina/uso terapêutico , Peróxido de Hidrogênio , Plexo Braquial/metabolismo , Plexo Braquial/cirurgia , Neuralgia/tratamento farmacológico , Corno Dorsal da Medula Espinal/metabolismo , Estresse Oxidativo
19.
Int Immunopharmacol ; 114: 109504, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36508924

RESUMO

BACKGROUND: Alzheimer's disease (AD) is the most common form of neurodegenerative disorder characterized by progressive loss of memory and cognitive functions. There are two pathological hallmarks, including accumulation of amyloid plaques composed of ß-amyloid peptide (Aß) and deposits of neurofibrillatory tangles (NFT). Cyclin-dependent kinase 5 (CDK5), a serine/threonine kinase, plays an important role in synaptic plasticity and cognitive behavior. Sulforaphene (SF) has been demonstrated to exert anti-AD activity in AD rat model. In this study, we aimed to evaluate the cognitive deficits improving effects of SF on in TgCRND8 mice and to elucidate the underlying molecular mechanisms. METHODS: TgCRND8 mice were intragastrically treated with SF (25 and 50 mg/kg) for 4 months from 3-month-old. The cognitive functions were assessed using Morris Water Maze Test. Cultured primary mouse neurons were pre-treated with SF, followed by co-treatment with Aß1-42 oligomers. CDK5 inhibitor (roscovitine) was used to determine the involvement of CDK5/p25 pathway in the anti-AD effects of SF in primary neurons. RESULTS: Our results showed that SF treatment significantly ameliorated the cognitive deficits in TgCRND8 mice and protected primary mouse neurons against Aß1-42 induced neurotoxicity. SF could modulate the expression of Aß production related markers, and suppress the phosphorylation of tau protein at specific sites in the TgCRND8 mice. In addition, SF enhanced the expressions of synaptic plasticity related markers and CDK5. SF also markedly suppressed the CDK5/p25 activity. CONCLUSIONS: SF is a potent CDK5 inhibitor and a potential therapeutic agent for treatment and prevention of AD. Moreover, SF inhibited the overexpression of CDK5 in primary neurons of mouse.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Ratos , Doença de Alzheimer/metabolismo , Proteínas tau/metabolismo , Camundongos Transgênicos , Peptídeos beta-Amiloides/metabolismo , Fosforilação , Inibidores de Proteínas Quinases/uso terapêutico , Cognição , Quinase 5 Dependente de Ciclina/metabolismo , Modelos Animais de Doenças
20.
J Ethnopharmacol ; 302(Pt A): 115859, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36280017

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: A widely used traditional prescription, Yi-Gan San (YGS) is a remedy for neurodegenerative disorders. The formulation consists of seven Chinese medicinal materials in specific proportions, namely Uncariae Ramulus cum Uncis (Uncaria rhynchophylla (Miq.) Miq. ex Havil.), Bupleuri Radix (Bupleurum chinense DC.), Angelicae Sinensis Radix (Angelica sinensis (Oliv.) Diels), Chuanxiong Rhizoma (Ligusticum wallichii Franch.), Poria (Poria cocos (Schw.) Wolf), Atractylodis Macrocephalae Rhizoma (Atractylodes macrocephala Koidz.) and Glycyrrhizae Radix et Rhizoma (Glycyrrhiza uralensis Fisch.). Using YGS has been shown to alleviate various behavioural and psychological symptoms of dementia (BPSD). AIM OF THIS REVIEW: The goal of this review is to give up-to-date information about the traditional uses, chemistry, pharmacology and clinical efficacy of YGS based on the scientific literature and to learn the current focus and provide references in the next step. MATERIALS AND METHODS: The database search room was accessed using the search terms "Yi-Gan San" and "Yokukansan" to obtain results from resources such as Web of Science, PubMed, Google Scholar and Sci Finder Scholar. We not only consulted the literature of fellow authors for this review but also explored classical medical books. RESULTS: YGS has been used to cure neurosis, sleeplessness, night weeping and restlessness in infants. Its chemical components primarily consist of triterpenes, flavonoids, phenolics, lactones, alkaloids and other types of compounds. These active ingredients displayed diverse pharmacological activities to ameliorate BPSD by regulating serotonergic, glutamatergic, cholinergic, dopaminergic, adrenergic, and GABAergic neurotransmission. In addition, YGS showed neuroprotective, antistress, and anti-inflammatory effects. The majority of cases of neurodegenerative disorders are treated with YGS, including Alzheimer's disease and dementia with Lewy bodies. CONCLUSIONS: Based on previous studies, YGS has been used as a traditional prescription in East Asia, such as Japan, Korea and China, and it has diverse chemical compounds and multiple pharmacological activities. Nevertheless, few experimental studies have focused on chemical and quantitative YGS studies, suggesting that further comprehensive research on its chemicals and quality assessments is critical for future evaluations of drug efficacy.


Assuntos
Angelica sinensis , Atractylodes , Medicamentos de Ervas Chinesas , Glycyrrhiza uralensis , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/química , Angelica sinensis/química , Prescrições
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA