Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 24(47): 28864-28869, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36437692

RESUMO

Sub-monolayer amounts of trioxatriangulenium (TOTA) molecules functionalized with biphenyl on Ag(111) were investigated with scanning tunnelling microscopy. The molecule is comprised of a rod-shaped axial ligand and a triangular platform that tends to form hydrogen bonds in arrays. Two superstructures are observed, a hexagonal tiling and a phase of molecular double rows. While the former structure matches previous observations from other functionalized TOTA molecules the latter one was unexpected. Aided by density functional theory results, we analyse the observed intramolecular contrast and present a model of the new phase. We discuss possible interaction mechanisms underlying the molecular pattern.

2.
Nat Mater ; 17(7): 592-598, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29867166

RESUMO

Electrocatalysis is at the heart of our future transition to a renewable energy system. Most energy storage and conversion technologies for renewables rely on electrocatalytic processes and, with increasing availability of cheap electrical energy from renewables, chemical production will witness electrification in the near future1-3. However, our fundamental understanding of electrocatalysis lags behind the field of classical heterogeneous catalysis that has been the dominating chemical technology for a long time. Here, we describe a new strategy to advance fundamental studies on electrocatalytic materials. We propose to 'electrify' complex oxide-based model catalysts made by surface science methods to explore electrocatalytic reactions in liquid electrolytes. We demonstrate the feasibility of this concept by transferring an atomically defined platinum/cobalt oxide model catalyst into the electrochemical environment while preserving its atomic surface structure. Using this approach, we explore particle size effects and identify hitherto unknown metal-support interactions that stabilize oxidized platinum at the nanoparticle interface. The metal-support interactions open a new synergistic reaction pathway that involves both metallic and oxidized platinum. Our results illustrate the potential of the concept, which makes available a systematic approach to build atomically defined model electrodes for fundamental electrocatalytic studies.

3.
Phys Chem Chem Phys ; 20(36): 23702-23716, 2018 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-30191927

RESUMO

We have studied particle size effects on atomically-defined model catalysts both in ultrahigh vacuum (UHV) and under electrochemical (EC) conditions in liquid electrolytes. The model catalysts were prepared in UHV by physical vapour deposition (PVD) of Pt onto an ordered Co3O4(111) film on Ir(100), yielding nanoparticles (NPs) with an average size from 10 to 500 atoms per particle (0.8 to 3 nm). The model systems were characterized in UHV using surface science methods including scanning tunnelling microscopy (STM), before transferring them out of the UHV and into the electrolyte without contact to ambient conditions. By X-ray photoelectron spectroscopy (XPS) we show that the model surfaces are stable in the EC environment under the applied conditions (0.1 to 1 M phosphate buffer, pH 10, 0.33 to 1.03 VRHE). As a reference, we study Pt(111) under identical conditions. In UHV, we also investigated the adsorption of CO using infrared reflection absorption spectroscopy (IRRAS). Under EC conditions, we performed equivalent experiments using EC infrared reflection absorption spectroscopy (EC-IRRAS) in combination with cyclic voltammetry (CV). Characteristic differences were observed between the IR spectra under EC conditions and in UHV. Besides the red-shift induced by the interfacial electric field (Stark effect), the EC IR bands of CO on Pt(111) show a larger width (by a factor of 2) as a result of local variations in the CO environment and coupling to the electrolyte. The CO IR bands of the Pt NPs are even broader (by a factor of 5), which is attributed to local variations of the interfacial electric field at the NP surface. Further pronounced differences are observed between the spectra taken in UHV and in the electrolyte regarding the site occupation and its dependence on particle size. In UHV, adsorption at on-top sites is preferred on Pt(111) at low coverage and similar adsorption ratios of on-top and bridge-bonded CO are formed at saturation coverage. In sharp contrast, on-top adsorption of CO on Pt(111) is partially suppressed under EC conditions. This effect is attributed to the competitive adsorption of anions from the electrolyte and leads to a clear preference for bridge sites at higher potentials (>0.5 VRHE). For the Pt NPs, the situation is different and an increasing fraction of on-top CO is observed with decreasing particle size, both under EC conditions and in UHV. For the smallest particles (10-20 atoms) we do not detect any bridge-bonded CO. This change in site preference as a function of particle size is attributed to stronger on-top adsorption on low-coordinated Pt atoms of small Pt NPs. The effect leads to a clear preference for on-top adsorption in the electrolyte even at low CO coverage and over the full potential range studied.

4.
Langmuir ; 33(17): 4178-4188, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28402643

RESUMO

We investigated the adsorption behavior of 4,4'-biphenhyl dicarboxylic acid (BDA) on well-ordered CoO(111) films grown on Ir(100) as a function of coverage and temperature using time-resolved and temperature-programmed infrared reflection absorption spectroscopy (TR-IRAS, TP-IRAS) in combination with density functional theory (DFT) and scanning tunneling microscopy (STM) under ultrahigh vacuum (UHV) conditions. To compare the binding behavior of BDA as a function of the oxide film thickness, three different CoO(111) film thicknesses were explored: films of about 20 bilayers (BLs) (approximately 5 nm), 2 BLs, and 1 BL. The two carboxylic acid groups of BDA offer two potential anchoring points to the oxide surface. At 150 K, intact BDA adsorbs on 20 BL thick oxide films in planar geometry with the phenyl rings aligned parallel to the surface. With decreasing oxide film thickness, we observe an increasing tendency for deprotonation and the formation of flat-lying BDA molecules anchored as dicarboxylates. After saturation of the first monolayer, intact BDA multilayers grow with molecules aligned parallel to the surface. The BDA multilayer desorbs at around 360 K. Completely different growth behavior is observed if BDA is deposited above the multilayer desorption temperature. Initially, doubly deprotonated dicarboxylates are formed by adopting a flat-lying orientation. With increasing exposure, however, the adsorbate layer transforms into upright standing monocarboxylates. A sharp OH stretching band (3584 cm-1) and a blue-shifted CO stretching band (1759 cm-1) indicate weakly interacting apical carboxylic acid groups at the vacuum interface. The anchored monocarboxylate phase slowly desorbs in a temperature range of up to 470 K. At higher temperature, a flat-lying doubly deprotonated BDA is formed, which desorbs and decomposes in a temperature range of up to 600 K.

5.
Chemistry ; 21(37): 12978-83, 2015 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-26216335

RESUMO

Cyclotrimerization-induced chiral supramolecular structures of 4-ethynyltriphenylamine (ETPA) have been synthesized on the Au(111) surface through alkyne-based reactions. Whereas the ETPA molecules adsorbed on the Au(111) surface remain inert and form a close-packed self-assembled structure at room temperature, the combination of scanning tunneling microscopy observations and theoretical calculations unambiguously reveal that the ETPA molecules cyclotrimerize to form new trimer-like species-1,3,5-tris[4-(diphenylamino)phenyl]benzene (TPAPB)-after annealing at 323 K. Further annealing drives these cyclotrimerized TPAPB molecules to form chiral hexagonal supramolecular structures with an extraordinary self-healing ability.

6.
ACS Nano ; 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39001861

RESUMO

Patterning and defect engineering are key methods for tuning the properties and enabling distinctive functionalities in two-dimensional (2D) materials. However, generating 2D periodic patterns of point defects in 2D materials, such as vacancy lattices that can serve as antidot lattices, has been elusive until now. Herein, we report on 2D transition metal dihalides epitaxially grown on metal surfaces featuring periodically assembled halogen vacancies that result in alternating coordination of the transition metal atom. Using low-temperature scanning probe microscopy and low-energy electron diffraction, we identified the structural properties of intrinsically patterned FeBr2 and CoBr2 monolayers grown epitaxially on Au(111). Density functional theory reveals that Br vacancies are facilitated by low formation energies, and the formation of a vacancy lattice results in a substantial decrease in the lattice mismatch with the underlying Au(111). We demonstrate that interfacial strain engineering presents a versatile strategy for controlled patterning in two dimensions with atomic precision over several hundred nanometers to solve a long-standing challenge of growing atomically precise antidot lattices. In particular, patterning of 2D materials containing transition metals provides a versatile method to achieve unconventional spin textures with noncollinear spin.

7.
Nat Commun ; 15(1): 2738, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548739

RESUMO

The functionality of atomic quantum emitters is intrinsically linked to their host lattice coordination. Structural distortions that spontaneously break the lattice symmetry strongly impact their optical emission properties and spin-photon interface. Here we report on the direct imaging of charge state-dependent symmetry breaking of two prototypical atomic quantum emitters in mono- and bilayer MoS2 by scanning tunneling microscopy (STM) and non-contact atomic force microscopy (nc-AFM). By changing the built-in substrate chemical potential, different charge states of sulfur vacancies (VacS) and substitutional rhenium dopants (ReMo) can be stabilized. Vac S - 1 as well as Re Mo 0 and Re Mo - 1 exhibit local lattice distortions and symmetry-broken defect orbitals attributed to a Jahn-Teller effect (JTE) and pseudo-JTE, respectively. By mapping the electronic and geometric structure of single point defects, we disentangle the effects of spatial averaging, charge multistability, configurational dynamics, and external perturbations that often mask the presence of local symmetry breaking.

8.
ACS Nano ; 18(26): 16622-16631, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38904174

RESUMO

Atomically precise graphene nanoribbons (GNRs) have a wide range of electronic properties that depend sensitively on their chemical structure. Several types of GNRs have been synthesized on metal surfaces through selective surface-catalyzed reactions. The resulting GNRs are adsorbed on the metal surface, which may lead to hybridization between the GNR orbitals and those of the substrate. This makes investigation of the intrinsic electronic properties of GNRs more difficult and also rules out capacitive gating. Here, we demonstrate the formation of a dielectric gold chloride adlayer that can intercalate underneath GNRs on the Au(111) surface. The intercalated gold chloride adlayer electronically decouples the GNRs from the metal and leads to a substantial hole-doping of the GNRs. Our results introduce an easily accessible tool in the in situ characterization of GNRs grown on Au(111) that allows for exploration of their electronic properties in a heavily hole-doped regime.

9.
J Colloid Interface Sci ; 611: 654-661, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34973660

RESUMO

Although transition metal oxides (TMOs) have attracted enormous attention owing to their high performance in supercapacitors, it still remains challenging issues in terms of the poor electrical conductivity, sluggish redox kinetics and insufficient electrochemical active sites. Herein, the high-capacity CoP-Mn3P nanoclusters featuring the heterogeneous interfaces have been successfully synthesized through hydrothermal method followed by annealing. The heterojunction formed between CoP and Mn3P redistributes the charge at the interface between them, generating the built-in electric field to accelerate electron transfer, and thus the conductivity of the electrode is enhanced. Moreover, the unique morphology of nanoclusters composed of flake structures is beneficial to provide more electrochemical active sites. Consequently, the resultant CoP-Mn3P nanoclusters electrode delivers an exceptional gravimetric specific capacity (2714 F g-1 at 1 A g-1) as well as a long cycle lifespan (83.1% of capacitance retention after 10,000 cycles). An asymmetric supercapacitor (ASC) device assembling with employing CoP/Mn3P electrode presents an ultrahigh energy density value of 46.4 Wh kg-1 at a power density of 800.0 W kg-1 and a super capacitance retention of 86.2% after 30,000 cycles. This work paves an effective way for the investigation on the charge transfer kinetics of electrode materials.

10.
Nat Chem ; 14(8): 871-876, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35760960

RESUMO

The [n]cycloparaphenylenes ([n]CPPs)-n para-linked phenylenes that form a closed-loop-have attracted substantial attention due to their unique cyclic structure and highly effective para-conjugation leading to a myriad of fascinating electronic and optoelectronic properties. However, their strained topology prevents the π-extension of CPPs to convert them either into armchair nanobelts or planarized CPP macrocycles. Here we successfully tackle this long-standing challenge and present the bottom-up synthesis and characterization of atomically precise in-plane π-extended [12]CPP on Au(111) by low-temperature scanning probe microscopy and spectroscopy combined with density functional theory. The planar π-extended CPP is a nanographene with an all-armchair edge topology. The exclusive para-conjugation at the periphery yields delocalized electronic states and the planarization maximizes the overlap of p orbitals, which both reduce the bandgap compared to conventional CPPs. Calculations predict ring currents and global aromaticity in the doubly charged system. The intriguing planar ring topology and unique electronic properties make planar π-extended CPPs promising quantum materials.

11.
Beilstein J Nanotechnol ; 11: 1516-1524, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33094085

RESUMO

Porphyrins represent a versatile class of molecules, the adsorption behavior of which on solid surfaces is of fundamental interest due to a variety of potential applications. We investigate here the molecule-molecule and molecule-substrate interaction of Co-5,15-diphenylporphyrin (Co-DPP) and 2H-tetrakis(p-cyanophenyl)porphyrin (2H-TCNP) on one bilayer (1BL) and two bilayer (2BL) thick cobalt oxide films on Ir(100) by scanning tunneling microscopy (STM) and density functional theory (DFT). The two substrates differ greatly with respect to their structural and potential-energy landscape corrugation with immediate consequences for adsorption and self-assembly of the molecules studied. On both films, an effective electronic decoupling from the metal substrate is achieved. However, on the 1BL film, Co-DPP molecules are sufficiently mobile at 300 K and coalesce to self-assembled molecular islands when cooled to 80 K despite their rather weak intermolecular interaction. In contrast, on the 2BL film, due to the rather flat potential landscape, molecular rotation is thermally activated, which effectively prevents self-assembly. The situation is different for 2H-TCNPP, which, due to the additional functional anchoring groups, does not self-assemble on the 1BL film but forms self-assembled compact islands on the 2BL film. The findings demonstrate the guiding effect of the cobalt oxide films of different thickness and the effect of functional surface anchoring.

12.
ACS Nano ; 12(2): 1203-1210, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29336554

RESUMO

We studied the formation of linked porphyrin oligomers from 5,15-diphenylporphyrin (2H-DPP) by thermal, substrate-assisted organometallic and dehydrogenation coupling on Cu(111) by scanning tunneling microscopy. In the range of 300-620 K, we find three distinct stages, at 300 K, the intact 2H-DPP molecules self-assemble into linear structures held together by van der Waals forces. Increasing the substrate temperature, self-metalation and intramolecular ring-closing reactions result in planar and isolated DPP species on the surface. By C-H cleavage, porphyrin oligomers bonded by organometallic and covalent bonds between the modified DPP are formed. The amount of covalently bonded DPP oligomers increases strongly with annealing time and temperature, and they become the dominant species at 570 K. In contrast, the number of organometallically bonded DPP oligomers increases moderately even up to 620 K, indicating that in this case the organometallic bond is no precursor of the covalent bond.

13.
Chem Commun (Camb) ; 52(54): 8420-3, 2016 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-27302478

RESUMO

One-dimensional π-conjugated polymer chains with variable lengths have been synthesized successfully via thermal polymerization reaction on the Au(111) surface. Such polymer chains form parallel arrays along specific directions according to the initial assembly orientations of the close-packed Br-BTTN precursors.

14.
ACS Nano ; 8(12): 12734-40, 2014 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-25493328

RESUMO

Reversible molecular switches with molecular orientation as the information carrier have been achieved on individual phthalocyanine (H2Pc) molecules adsorbed on a Cu(100) surface at room temperature. Scanning tunneling microscopy (STM) imaging directly demonstrates that H2Pc molecules can be controlled to move along the [011] or [011̅] surface direction of the Cu(100) surface, and the orientation of H2Pc molecules can also be switched between two angles of ±28° with respect to the [011] surface direction by a lateral manipulation. Owing to the highly efficient control over the adsorption site and orientation of H2Pc adsorbed on the Cu(100) surface by lateral manipulation, a pyramidal array formed by 10 H2Pc molecules has been constructed on the Cu surface as a prototype of binary memory, and every molecule within such a molecular array can be individually and reversibly controlled by a STM tip.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA