Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 700
Filtrar
1.
Plant Cell ; 34(11): 4313-4328, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-35904763

RESUMO

Leaf morphology is one of the most important features of the ideal plant architecture. However, the genetic and molecular mechanisms controlling this feature in crops remain largely unknown. Here, we characterized the rice (Oryza sativa) wide leaf 1 (wl1) mutant, which has wider leaves than the wild-type due to more vascular bundles and greater distance between small vascular bundles. WL1 encodes a Cys-2/His-2-type zinc finger protein that interacts with Tillering and Dwarf 1 (TAD1), a co-activator of the anaphase-promoting complex/cyclosome (APC/C) (a multi-subunit E3 ligase). The APC/CTAD1 complex degrades WL1 via the ubiquitin-26S proteasome degradation pathway. Loss-of-function of TAD1 resulted in plants with narrow leaves due to reduced vascular bundle numbers and distance between the small vascular bundles. Interestingly, we found that WL1 negatively regulated the expression of a narrow leaf gene, NARROW LEAF 1 (NAL1), by recruiting the co-repressor TOPLESS-RELATED PROTEIN and directly binding to the NAL1 regulatory region to inhibit its expression by reducing the chromatin histone acetylation. Furthermore, biochemical and genetic analyses revealed that TAD1, WL1, and NAL1 operated in a common pathway to control the leaf width. Our study establishes an important framework for understanding the APC/CTAD1-WL1-NAL1 pathway-mediated control of leaf width in rice, and provides insights for improving crop plant architecture.


Assuntos
Oryza , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Fenótipo , Mutação/genética , Folhas de Planta/genética , Folhas de Planta/metabolismo
2.
Crit Rev Immunol ; 44(3): 53-65, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38421705

RESUMO

BACKGROUND: The present study investigated the roles and mechanisms of platelet-derived exosomes in sepsis-induced acute renal injury. METHODS: The blood samples of septic patients and healthy controls were collected for clinical examination. The plasma levels of miR-223-3p and NLRP3 mRNA were analyzed by qRT-PCR and the serum IL-1ß and creatinine levels were quantified by enzyme-linked immunosorbent assay (ELISA). C57BL/6 mice injected with LPS (lipopolysaccharide) were employed as the animal model for sepsis-induced acute renal injury. Human coronary artery endothelial cells (HCAECs) were treated with TNF-α as a cellular model for sepsis-induced endothelial damages. RESULTS: The number of PMP (platelet-derived microparticles) in patients with sepsis was increased. The level of miR-223-3p in the platelet exosomes isolated from the serum sample in patients with sepsis was significantly lower than that of the healthy controls. The level of miR-223-3p was also decreased in the platelet exosomes of mouse model with sepsis-induced acute renal injury. Downregulating miR-223-3p promoted sepsis-induced acute renal injury in mice model, while the administration of miR-223-3p reduced the inflammation in endothelial cells of sepsis-induced acute renal injury. NLRP3 (NLR Family Pyrin Domain Containing 3) was identified as one target of miR-223-3p in the platelet exosomes of sepsis-induced acute kidney injury. miR-223-3p attenuated NLRP3-induced pyroptosis in endothelial cell model of sepsis-induced acute kidney injury. CONCLUSION: Our data suggest that platelet exosome-derived miR-223-3p negatively regulates NLRP3-dependent inflammasome to suppress pyroptosis in endothelial cells. Decreased miR-223-3p expression promotes the inflammation in sepsis-induced acute renal injury. Targeting miR-223-3p may be developed into a therapeutic approach for sepsis-induced acute renal injury.


Assuntos
Injúria Renal Aguda , Micropartículas Derivadas de Células , Exossomos , MicroRNAs , Sepse , Camundongos , Animais , Humanos , Camundongos Endogâmicos C57BL , Piroptose , Proteína 3 que Contém Domínio de Pirina da Família NLR , Células Endoteliais , Sepse/complicações , Injúria Renal Aguda/etiologia , Modelos Animais de Doenças , Inflamação , Lipopolissacarídeos , MicroRNAs/genética
3.
Exp Cell Res ; 440(1): 114103, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38848951

RESUMO

Elevated homocysteine (Hcy) levels have been recognized as significant risk factor for cardiovascular and cerebrovascular diseases, closely related to endothelial injury. While expression of Ciliary Neurotrophic Factor (CNTF) significantly increases during Hcy-induced vascular endothelial cell injury, the precise molecular pathways through which CNTF operates remain to be clarified. To induce vascular endothelial cell injury, human umbilical vein endothelial cells (HUVECs) were treated with Hcy. Cell viability and apoptosis in HUVECs were assessed using the CCK-8 assay and flow cytometry. Western blot analysis determined the expression levels of the JAK2-STAT3 pathway, inflammation-related factors (IL-1ß, NLRP3, ICAM-1, VCAM-1), and apoptosis-related factors (cleaved Caspase-3 and Bax). Immunofluorescence staining and western blotting were employed to examine CD31 and α-SMA expression. Knockdown of CNTF was achieved using lentiviral interference, and its effects on inflammation and cell injury were evaluated. Chromatin immunoprecipitation (ChIP) and dual luciferase reporter analysis were conducted to investigate the interaction between the MAFK and CNTF promoters. Our results indicated that Hcy induced high expression of CNTF and activated the JAK2-STAT3 signaling pathway, thereby upregulating factors associated with inflammation and cell apoptosis. Inhibiting CNTF alleviated Hcy-induced inflammation and cell injury. MAFK was identified as a transcription factor promoting CNTF transcription, and its overexpression exacerbated inflammation and cell injury in Hcy-treated HUVECs through the CNTF-JAK2-STAT3 axis, which could be reversed by knocking down CNTF. Activation of MAFK leads to CNTF upregulation, which activates the JAK2-STAT3 signaling pathway, regulating inflammation and inducing injury in Hcy-exposed vascular endothelial cells. Targeting CNTF or its upstream regulator MAFK may represent potential therapeutic strategies for mitigating endothelial dysfunction associated with hyperhomocysteinemia and cardiovascular diseases.


Assuntos
Apoptose , Fator Neurotrófico Ciliar , Homocisteína , Células Endoteliais da Veia Umbilical Humana , Inflamação , Janus Quinase 2 , Fator de Transcrição STAT3 , Transdução de Sinais , Janus Quinase 2/metabolismo , Humanos , Fator de Transcrição STAT3/metabolismo , Homocisteína/farmacologia , Homocisteína/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Fator Neurotrófico Ciliar/metabolismo , Fator Neurotrófico Ciliar/genética , Apoptose/efeitos dos fármacos , Células Cultivadas , Sobrevivência Celular/efeitos dos fármacos
4.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35046037

RESUMO

SAMD9 and SAMD9L (SAMD9/9L) are antiviral factors and tumor suppressors, playing a critical role in innate immune defense against poxviruses and the development of myeloid tumors. SAMD9/9L mutations with a gain-of-function (GoF) in inhibiting cell growth cause multisystem developmental disorders including many pediatric myelodysplastic syndromes. Predicted to be multidomain proteins with an architecture like that of the NOD-like receptors, SAMD9/9L molecular functions and domain structures are largely unknown. Here, we identified a SAMD9/9L effector domain that functions by binding to double-stranded nucleic acids (dsNA) and determined the crystal structure of the domain in complex with DNA. Aided with precise mutations that differentially perturb dsNA binding, we demonstrated that the antiviral and antiproliferative functions of the wild-type and GoF SAMD9/9L variants rely on dsNA binding by the effector domain. Furthermore, we showed that GoF variants inhibit global protein synthesis, reduce translation elongation, and induce proteotoxic stress response, which all require dsNA binding by the effector domain. The identification of the structure and function of a SAMD9/9L effector domain provides a therapeutic target for SAMD9/9L-associated human diseases.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/química , Modelos Moleculares , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Supressoras de Tumor/química , Sítios de Ligação , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mutação , Ligação Proteica , Estresse Fisiológico , Relação Estrutura-Atividade , Proteínas Supressoras de Tumor/metabolismo
5.
J Am Chem Soc ; 146(1): 1174-1184, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38153040

RESUMO

Controlling multimetallic ensembles at the atomic level is significantly challenging, particularly for high-entropy alloys with more than five elements. Herein, we report an innovative ultrasmall (∼2 nm) PtFeCoNiCuZn high-entropy intermetallic (PFCNCZ-HEI) with a well-ordered structure synthesized by using the space-confined strategy. By exploiting these combined metals, the PFCNCZ-HEI nanoparticles achieve an ultrahigh mass activity of 2.403 A mgPt-1 at 0.90 V vs reversible hydrogen electrode for the oxygen reduction reaction, which is up to 19-fold higher than that of state-of-the-art commercial Pt/C. A proton exchange membrane fuel cell assembled with PFCNCZ-HEI as the cathode (0.03 mgPt cm-2) exhibits a power density of 1.4 W cm-2 and a high mass-normalized rated power of 45 W mgPt-1. Furthermore, theoretical calculations reveal that the outer electrons of the non-noble-metal atoms on the surface of the PFCNCZ-HEI nanoparticle are modulated to show characteristics of multiple active centers. This work offers a promising catalyst design direction for developing highly ordered HEI nanoparticles for electrocatalysis.

6.
BMC Microbiol ; 24(1): 261, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39004720

RESUMO

BACKGROUND: The excessive application of chemical fertilizers in the cultivation of Astragalus mongholicus Bunge results in a reduction in the quality of the medicinal plant and compromises the sustainable productivity of the soil. PGPB inoculant is a hot topic in ecological agriculture research. In the cultivation of Astragalus mongholicus, the screened nitrogen-fixing bacteria can promote plant growth, however, whether it can promote the accumulation of main bioactive components remains unknown. In this study, mixed inoculants containing 5 strains of growth promoting bacteria (Rhizobium T16 , Sinorhizobium T21 , Bacillus J1 , Bacillus G4 and Arthrobacter J2) were used in the field experiment. The metabolic substances in the root tissues of Astragalus mongholicus were identified during the harvest period by non-targeted metabolomics method, and the differential metabolites between groups were identified by statistical analysis. Meanwhile, high-throughput sequencing was performed to analyze the changes of rhizosphere soil and endophytic microbial community structure after mixed microbial treatment. RESULTS: The results of non-targeted metabolism indicated a significant increase in the levels of 26 metabolites after treatment including 13 flavonoids, 3 saponins and 10 other components. The contents of three plant hormones (abscisic acid, salicylic acid and spermidine) also increased after treatment, which presumed to play an important role in regulating plant growth and metabolism. Studies on endosphere and rhizosphere bacterial communities showed that Rhzobiaceae, Micromonosporaceae, and Hypomicrobiaceae in endophytic, and Oxalobactereae in rhizosphere were significantly increased after treatment. These findings suggest their potential importance in plant growth promotion and secondary metabolism regulation. CONCLUSIONS: This finding provides a basis for developing nitrogen-fixing bacteria fertilizer and improving the ecological planting efficiency of Astragalus mongholicus.


Assuntos
Astrágalo , Microbiota , Raízes de Plantas , Rizosfera , Microbiologia do Solo , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo , Astrágalo/microbiologia , Astrágalo/metabolismo , Bactérias Fixadoras de Nitrogênio/metabolismo , Bactérias Fixadoras de Nitrogênio/genética , Saponinas/metabolismo , Bactérias/metabolismo , Bactérias/classificação , Bactérias/genética , Metabolômica , Arthrobacter/metabolismo , Arthrobacter/genética , Endófitos/metabolismo , Endófitos/genética , Rhizobium/metabolismo
7.
Physiol Plant ; 176(3): e14292, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38685817

RESUMO

Tracer injection has long been recognized as a valuable tool for delineating tree hydraulics and assessing water transport pathways. Recently, isotope tracers have emerged as innovative instruments for investigating tree hydraulics, providing new insights into tree water dynamics. Nevertheless, there is a critical need for further research to comprehensively grasp water movement and distribution within trees. A previously introduced technique for analyzing the isotopic ratio of water in wet tissues, offering millimeter-scale resolution for visualizing tracer movement, faces challenges due to its underdeveloped sample preparation techniques. In this study, we introduced an H2 18O tracer into S. gracilistyla samples, exclusively comprising indeterminate roots, stems, and leaves, cultivated through hydroponics and grown within the current year. Our objective was to assess the axial distribution of the tracer in the xylem. Additionally, we devised a novel method for preparing frozen wet tissue samples, enhancing the repeatability and success rate of experiments. The results demonstrated that all frozen wet tissue samples exhibited an average water loss rate of less than 0.6%. Isotopic analysis of these samples unveiled a consistent decline in tracer concentration with increasing height in all Salix specimens, with three out of five samples revealing a significant isotope gradient. Our findings affirm the efficacy and practicality of combining isotopic labeling with freezing, stabilization, and preparation techniques. Looking ahead, our isotopic labeling and analysis methods are poised to transcend woody plants, finding extensive applications in plant physiology and ecohydrology.


Assuntos
Congelamento , Isótopos de Oxigênio , Árvores , Água , Xilema , Isótopos de Oxigênio/análise , Água/metabolismo , Árvores/metabolismo , Xilema/metabolismo , Xilema/química , Folhas de Planta/metabolismo , Folhas de Planta/química , Raízes de Plantas/metabolismo , Raízes de Plantas/química , Marcação por Isótopo/métodos , Caules de Planta/química , Caules de Planta/metabolismo
8.
BMC Public Health ; 24(1): 460, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355487

RESUMO

BACKGROUND: The COVID-19 pandemic has imposed unprecedented stress and challenges upon medical staff, potentially resulting in posttraumatic growth (PTG). This scoping review aims to synthesize the existing knowledge on PTG among medical staff during the pandemic by identifying its current status and potential influencing factors. The findings may provide a foundation for future research and interventions to enhance the medical staff's psychological resilience and well-being. METHODS: Literature was systematically searched on PTG among medical staff during the COVID-19 pandemic from 01 January 2020 to 31 December 2022. The following databases were searched: PubMed, Web of Science, Embase, CINAHL, PsycINFO, Cochrane Library, China National Knowledge Infrastructure (CNKI), Chinese Biomedical Literature Service System (SinoMed), and Wanfang Data. Eligibility criteria included: (1) medical staff as research subjects; (2) a focus on "posttraumatic growth" or "alternative posttraumatic growth" related to the COVID-19 outbreak and pandemic; (3) discussion of the situation and influencing factors of PTG; and (4) study types, such as qualitative, quantitative, and mixed methods. Two researchers independently selected and extracted study characteristics (study design, study population, region, measurement instruments, and primary outcomes) from the included literature. The data were synthesized qualitatively and descriptively. RESULTS: Thirty-six papers from 12 countries met the inclusion criteria. Moderate PTG levels were observed among healthcare workers during the COVID-19 pandemic, with emphasis on "interpersonal relationships," "changes in life philosophy," and "growth in personal competence." Influencing factors included trauma exposure, sociodemographics, psychological characteristics (resilience and positive qualities), coping, and social support. CONCLUSIONS: This review discovered moderate PTG levels among medical staff during the COVID-19 pandemic, with critical areas in interpersonal relationships, life philosophy, and personal competence. The identified influencing factors can inform future research and interventions to enhance healthcare workers' psychological resilience and well-being.


Assuntos
COVID-19 , Crescimento Psicológico Pós-Traumático , Resiliência Psicológica , Humanos , Pandemias , Corpo Clínico
9.
Ecotoxicol Environ Saf ; 270: 115859, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38157795

RESUMO

The role of the nucleolus in Pakchoi response to Cd stress remains largely unknown. In this work, we focus on exploring the underling mechanism between nucleolus disruption and epigenetic modification in Cd stressed-Pakchoi. Our results indicated that the proportion of nucleolus disruption, decondensation of 45 S rDNA chromatin, and a simultaneous increase in 5' external transcribed spacer region (ETS) transcription were observed with increasing Cd concentration, accompanied by genome-wide alterations in the levels of histone acetylation and methylation. Further results showed that Cd treatment exhibited a significant increase in H3K9ac, H4K5ac, and H3K9me2 levels occurred in promoter regions of the 45 S rDNA. Additionally, DNA methylation assays in the 45 S rDNA promoter region revealed that individual site-specific hypomethylation may be engaged in the activation of 45 S rDNA transcription. Our study provides some molecular mechanisms for the linkage between Cd stress, rDNA epigenetic modifications, and nucleolus disintegration in plants.


Assuntos
Cádmio , Cromatina , DNA Ribossômico/genética , Cádmio/toxicidade , Epigênese Genética , Metilação de DNA
10.
BMC Oral Health ; 24(1): 568, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745216

RESUMO

BACKGROUND: Understanding the tooth anatomy is crucial for ensuring effective endodontic treatment. This study investigated the root canal morphology of the second mesiobuccal (MB2) canal in maxillary first molars (MFMs) in a Chinese population using cone-beam computed tomography (CBCT). METHODS: This study evaluated 486 MFMs with MB2 canals from 285 participants undergoing CBCT examination and determined the Vertucci's classification and position of the MB2 canal orifice. The prevalence of the MB2 canal was correlated with the sex, age, and tooth side. The correlations between the prevalence of the MB2 canal and sex and tooth side were assessed using the Fisher's exact test. The chi-square test was used for evaluating the correlation between the prevalence of the MB2 canal and age. RESULTS: The number of type II, III, IV, V, VI, VII, and other root canals in the MFMs was 30.9%, 0.6%, 65.0%, 1.2%, 1.2%, 0.4%, and 0.6%, respectively. Among the 201 cases with bilateral inclusion, 87.6% showed consistent canal configuration. Results of the first clear apparent position (FCAP) of the MB2 canals showed that 434, 44, and 3 teeth had FCAP at the upper, middle, and bottom one-third of the root, respectively. The FCAPs of the MB2 canal in the MFMs with types II, IV, and VI, as well as types III and V canals showed significant differences (p<0.05). The horizontal distance between the MB1 and MB2 canal orifices in the type II canals of MFMs was significantly lesser than those in the type IV canals of MFMs (p < 0.01). The longitudinal distance between the pulp chamber floor plane and MB2 canal orifice significantly correlated with age (p < 0.05). CONCLUSIONS: The morphology of the mesiobuccal root canal in the MFMs is complex. Complete understanding of the anatomical morphology of the root canal combined with the CBCT and dental operating microscope is necessary for the accurate detection of the MB2 canal and consequently improved success rate of root canal treatment. Our study findings can help endodontists improve endodontic treatment outcomes.


Assuntos
Tomografia Computadorizada de Feixe Cônico , Cavidade Pulpar , Maxila , Dente Molar , Humanos , Tomografia Computadorizada de Feixe Cônico/métodos , Dente Molar/anatomia & histologia , Dente Molar/diagnóstico por imagem , Masculino , Feminino , Adulto , Cavidade Pulpar/diagnóstico por imagem , Cavidade Pulpar/anatomia & histologia , Pessoa de Meia-Idade , Maxila/diagnóstico por imagem , Maxila/anatomia & histologia , China , Adolescente , Idoso , Adulto Jovem , População do Leste Asiático
11.
Zhongguo Yi Liao Qi Xie Za Zhi ; 48(1): 44-50, 2024 Jan 30.
Artigo em Zh | MEDLINE | ID: mdl-38384216

RESUMO

This study summarizes the application of automatic recognition technologies for patient-ventilator asynchrony (PVA) during mechanical ventilation. In the early stages, the method of setting rules and thresholds relied on manual interpretation of ventilator parameters and waveforms. While these methods were intuitive and easy to operate, they were relatively sensitive in threshold setting and rule selection and could not adapt well to minor changes in patient status. Subsequently, machine learning and deep learning technologies began to emerge and develop. These technologies automatically extract and learn data characteristics through algorithms, making PVA detection more robust and universal. Among them, logistic regression, support vector machines, random forest, hidden Markov models, convolutional autoencoders, long short-term memory networks, one-dimensional convolutional neural networks, etc., have all been successfully used for PVA recognition. Despite the significant advancements in feature extraction through deep learning methods, their demand for labelled data is high, potentially consuming significant medical resources. Therefore, the combination of reinforcement learning and self-supervised learning may be a viable solution. In addition, most algorithm validations are based on a single dataset, so the need for cross-dataset validation in the future will be an important and challenging direction for development.


Assuntos
Assincronia Paciente-Ventilador , Respiração Artificial , Humanos , Ventiladores Mecânicos , Algoritmos , Redes Neurais de Computação
12.
Proteins ; 91(1): 16-21, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36514832

RESUMO

Alpha(α)-synuclein is closely related to the pathogenesis of Parkinson's disease (PD). The NACore, a fragment of α-synuclein, is considered to be the key region of α-synuclein that causes PD. The aggregation dynamics of NACores are studied via coarse-grained molecular dynamics simulations. We find that NACores can self-assemble into a large cluster at high concentrations. The aggregation dynamics can be divided into three stages. The growth kinetics for the first and second stages follows the power law, Smax ~ tγ , with the second stage faster than the first one. The characteristic lifetime for the high concentration is 40 times larger than that for the low concentration, implying the low fluidity. Understanding the aggregation dynamics of NACores is helpful to develop drugs for therapeutic prevention and intervention.


Assuntos
Simulação de Dinâmica Molecular , alfa-Sinucleína , alfa-Sinucleína/química , Cinética , Peptídeos/química
13.
Small ; 19(32): e2300943, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37060221

RESUMO

Iron-chromium redox flow batteries have attracted widespread attention because of their low cost. However, the performance of these batteries is still lower than that of vanadium redox flow batteries due to the poor electrochemical activity of Cr3+ /Cr2+ redox couples on graphite felt electrodes. Herein, binder-free TiN nanorods array-decorated 3D graphite felt composite electrode-is demonstrated. The dendrite-like TiN nanorods array increases the specific surface area of the electrode. The nitrogen and oxygen elements on the surface provide more adsorption sites and electrochemically active sites for Cr3+ /Cr2+ . The contact resistance of the composite electrode is effectively reduced and its homogeneity and stability are improved by avoiding the use of a binder and mixing process. A battery prepared using the TiN nanorods array-decorated 3D graphite felt electrode has enabled the maximum power density to be 427 mW·cm-2 , which is 74.0% higher than a battery assembled with TiN nanoparticles bonded to graphite felt. At a current density of 80 mA·cm-2 , the TiN nanorods battery exhibits the highest coulombic efficiency of 93.0%, voltage efficiency of 90.4%, and energy efficiency of 84.1%. Moreover, the battery efficiency and composite electrode structure remains stable during a redox flow battery cycle test.

14.
BMC Cancer ; 23(1): 547, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37322411

RESUMO

BACKGROUND: Immune-checkpoint inhibitors (ICIs) have revolutionized the treatment of hepatocellular carcinoma (HCC). However, long-term survival outcomes and treatment response of HCC patients undergoing immunotherapy is unpredictable. The study aimed to evaluate the role of alpha-fetoprotein (AFP) combined with neutrophil-to-lymphocyte ratio (NLR) to predict the prognosis and treatment response of HCC patients receiving ICIs. METHODS: Patients with unresectable HCC who received ICI treatment were included. The HCC immunotherapy score was developed from a retrospective cohort at the Eastern Hepatobiliary Surgery Hospital to form the training cohort. The clinical variables independently associated with overall survival (OS) were identified using univariate and multivariate Cox regression analysis. Based on multivariate analysis of OS, a predictive score based on AFP and NLR was constructed, and patients were stratified into three risk groups according to this score. The clinical utility of this score to predict progression-free survival (PFS) and differentiate objective response rate (ORR) and disease control rate (DCR) was also performed. This score was validated in an independent external validation cohort at the First Affiliated Hospital of Wenzhou Medical University. RESULTS: Baseline AFP ≤ 400 ng/ml (hazard ratio [HR] 0.48; 95% CI, 0.24-0.97; P = 0.039) and NLR ≤ 2.77 (HR 0.11; 95% CI, 0.03-0.37; P<0.001) were found to be independent risk factors of OS. The two labolatory values were used to develop the score to predict survival outcomes and treatment response in HCC patients receiving immunotherapy, which assigned 1 point for AFP > 400 ng/ml and 3 points for NLR > 2.77. Patients with 0 point were classified as the low-risk group. Patients with 1-3 points were categorized as the intermediate-risk group. Patients with 4 points were classified as the high-risk group. In the training cohort, the median OS of the low-risk group was not reached. The median OS of the intermediate-risk group and high-risk group were 29.0 (95% CI 20.8-37.3) months and 16.0 (95% CI 10.8-21.2) months, respectively (P < 0.001). The median PFS of the low-risk group was not reached. The median PFS of the intermediate-risk group and high-risk group were 14.6 (95% CI 11.3-17.8) months and 7.6 (95% CI 3.6-11.7) months, respectively (P < 0.001). The ORR and DCR were highest in the low-risk group, followed by the intermediate-risk group and the high-risk group (P < 0.001, P = 0.007, respectively). This score also had good predictive power using the validation cohort. CONCLUSION: The HCC immunotherapy score based on AFP and NLR can predict survival outcomes and treatment response in patients receiving ICI treatments, suggesting that this score could serve as a useful tool for identification of HCC patients likely to benefit from immunotherapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , alfa-Fetoproteínas , Inibidores de Checkpoint Imunológico/uso terapêutico , Neutrófilos/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Estudos Retrospectivos , Linfócitos/patologia
15.
BMC Cancer ; 23(1): 1017, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37867191

RESUMO

BACKGROUND: The use of Anti-PD-1 therapy has yielded promising outcomes in hepatocellular carcinoma (HCC). However, limited research has been conducted on the overall survival (OS) of patients with varying tumor responses and treatment duration. METHODS: This retrospective study analyzed HCC patients who received sintilimab between January 2019 and December 2020 at four centers in China. The evaluation of tumor progression was based on Response Evaluation Criteria in Solid Tumors version 1.1. The study investigated the correlation between tumor response and OS, and the impact of drug use on OS following progressive disease (PD). RESULTS: Out of 441 treated patients, 159 patients satisfied the inclusion criteria. Among them, 77 patients with disease control exhibited a significantly longer OS compared to the 82 patients with PD (median OS 26.0 vs. 11.3 months, P < 0.001). Additionally, the OS of patients with objective response (OR) was better than that of patients with stable disease (P = 0.002). Among the 47 patients with PD who continued taking sintilimab, the OS was better than the 35 patients who discontinued treatment (median OS 11.4 vs. 6.9 months, P = 0.042). CONCLUSIONS: In conclusion, the tumor response in HCC patients who received sintilimab affects OS, and patients with PD may benefit from continued use of sintilimab.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Estudos Retrospectivos , Critérios de Avaliação de Resposta em Tumores Sólidos
16.
Langmuir ; 39(51): 19027-19036, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38088916

RESUMO

Deciphering the facet-dependent surface properties of clay minerals holds vital significance in both fundamental research and practical engineering applications. To date, the anisotropic local charge density of serpentine surfaces still remains elusive, and thus, the interaction energies and associated aggregate structures between different crystal planes of serpentine cannot be quantitatively determined. In this work, different crystal planes of serpentine (i.e., SiO basal, MgOH basal, and edge) were selectively exposed, and their surface potentials and charge densities were determined using atomic force microscopy (AFM) force measurements coupled with Derjaguin-Landau-Verwey-Overbeek (DLVO) theory fitting. The SiO and edge planes consistently exhibited a permanently negative surface charge, whereas the point of zero charge (PZC) on the MgOH plane was estimated to be pH 9.0-11.0. Based on the interaction energy calculation between different serpentine planes, the aggregation structures of serpentine were predicted. Combined with scanning electron microscopy observation of freeze-dried samples, SiO-MgOH and MgOH-edge associations were found to dominate the aggregate structures at pH ≤ 9.0, thereby resulting in a stacking or "card-houses" structures. In contrast, all of the plane associations exhibited the repulsive interaction energy at pH 11.0, which led to a completely dispersed system, ultimately causing the most severe fine particle entrainment during froth flotation. Our work provides quantitative clarification of facet-dependent surface properties and aggregate structures of serpentine under different pH conditions, which will help improve the fundamental understanding of colloidal behaviors of clay minerals.

17.
Physiol Plant ; 175(1): e13869, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36723249

RESUMO

Mitogen-activated protein kinases (MAPKs) play important roles in plant growth and development, as well as hormone and stress responses by signaling to eukaryotic cells, through MAPK cascade, the presence of various cues; thereby, regulating various responses. The MAPK cascade consists mainly of three gene families, MAPK, MAPKK, and MAPKKK, which activate downstream signaling pathways through sequential phosphorylation. Although the MAPK cascade gene family has been reported in several species, there is a lack of comprehensive analysis in poplar. We identified 21 MAPK genes, 11 MAPKK genes, and 104 MAPKKK genes in Populus trichocarpa. The phylogenetic classification was supported by conservative motif, gene structure and motif analysis. Whole genome duplication has an important role in the expansion of MAPK cascade genes. Analysis of promoter cis-elements and expression profiles indicates that MAPK cascade genes have important roles in plant growth and development, abiotic and biotic stresses, and phytohormone response. Expression profiling revealed a significant upregulation of PtMAPK3-1 expression in response to drought, salt and disease stresses. Poplar transiently overexpressing PtMAPK3-1 and treated with methyl jasmonic acid (MeJA) had higher catalase and peroxidase levels than non-overexpressing poplar. This work represents the first complete inventory of the MAPK cascade in P. trichocarpa, which reveals that PtMAPK3-1 is induced by the MeJA hormone and participates in the MeJA-induced enhancement of the antioxidant enzyme system.


Assuntos
Populus , Populus/genética , Filogenia , Quinases de Proteína Quinase Ativadas por Mitógeno/química , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Estresse Fisiológico/genética , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Hormônios , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Perfilação da Expressão Gênica
18.
J Chem Inf Model ; 63(15): 4633-4640, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37504964

RESUMO

Marginalized graph kernels have shown competitive performance in molecular machine learning tasks but currently lack measures of interpretability, which are important to improve trust in the models, detect biases, and inform molecular optimization campaigns. We here conceive and implement two interpretability measures for Gaussian process regression using a marginalized graph kernel (GPR-MGK) to quantify (1) the contribution of specific training data to the prediction and (2) the contribution of specific nodes of the graph to the prediction. We demonstrate the applicability of these interpretability measures for molecular property prediction. We compare GPR-MGK to graph neural networks on four logic and two real-world toxicology data sets and find that the atomic attribution of GPR-MGK generally outperforms the atomic attribution of graph neural networks. We also perform a detailed molecular attribution analysis using the FreeSolv data set, showing how molecules in the training set influence machine learning predictions and why Morgan fingerprints perform poorly on this data set. This is the first systematic examination of the interpretability of GPR-MGK and thereby is an important step in the further maturation of marginalized graph kernel methods for interpretable molecular predictions.

19.
J Chem Inf Model ; 63(21): 6515-6524, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37857374

RESUMO

We introduce an exploratory active learning (AL) algorithm using Gaussian process regression and marginalized graph kernel (GPR-MGK) to sample chemical compound space (CCS) at minimal cost. Targeting 251,728 enumerated alkane molecules with 4-19 carbon atoms, we applied the AL algorithm to select a diverse and representative set of molecules and then conducted high-throughput molecular simulations on these selected molecules. To demonstrate the power of the AL algorithm, we built directed message-passing neural networks (D-MPNN) using simulation data as the training set to predict liquid densities, heat capacities, and vaporization enthalpies of the CCS. Validations show that D-MPNN models built on the smallest training set considered in this work, which consists of 313 molecules or 0.124% of the original CCS, predict the properties with R2 > 0.99 against the computational data and R2 > 0.94 against the experimental data. The advantage of the presented AL algorithm is that the predicted uncertainty of GPR depends on only the molecular structures, which renders it compatible with high-throughput data generation.


Assuntos
Alcanos , Redes Neurais de Computação , Termodinâmica , Algoritmos , Estrutura Molecular
20.
Cardiovasc Drugs Ther ; 37(6): 1065-1076, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35488974

RESUMO

OBJECTIVE: MicroRNA-30a-5p (miR-30a-5p) has been identified as a marker of heart failure; however, its functional mechanisms in chronic heart failure (CHF) remain unknown. We aim to investigate the role of miR-30a-5p targeting sirtuin-1 (SIRT1) in myocardial remodeling in CHF via the nuclear factor-κB/NOD-like receptor 3 (NF-κB/NLRP3) signaling pathway. METHODS: CHF rat models were established using aortic coarctation. The expression of miR-30a-5p, SIRT1, and the NF-κB/NLRP3 signaling pathway-related factors in CHF rats was determined. The CHF rats were then respectively treated with altered miR-30a-5p or SIRT1 to explore their roles in cardiac function, myocardial function, inflammatory response, pathological changes, and cardiomyocyte apoptosis. The binding relation between miR-30a-5p and SIRT1 was confirmed. RESULTS: MiR-30a-5p was upregulated whereas SIRT1 was downregulated in myocardial tissues of CHF rats. MiR-30a-5p inhibition or SIRT1 overexpression improved cardiac and myocardial function, and suppressed the inflammatory response, alleviated pathological changes and inhibited cardiomyocyte apoptosis in CHF rats. MiR-30a-5p targeted SIRT1 to regulate the NF-κB/NLRP3 signaling pathway. In CHF rats, downregulated miR-30a-5p and silenced SIRT1 could reverse the beneficial effects of downregulated miR-30a-5p. CONCLUSION: Inhibited miR-30a-5p inhibits CHF progression via the SIRT1-mediated NF-κB/NLRP3 signaling pathway.


Assuntos
Insuficiência Cardíaca , MicroRNAs , Ratos , Animais , NF-kappa B/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Transdução de Sinais , Insuficiência Cardíaca/genética , Apoptose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA