Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.396
Filtrar
1.
Nat Immunol ; 25(2): 268-281, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38195702

RESUMO

Melanoma cells, deriving from neuroectodermal melanocytes, may exploit the nervous system's immune privilege for growth. Here we show that nerve growth factor (NGF) has both melanoma cell intrinsic and extrinsic immunosuppressive functions. Autocrine NGF engages tropomyosin receptor kinase A (TrkA) on melanoma cells to desensitize interferon γ signaling, leading to T and natural killer cell exclusion. In effector T cells that upregulate surface TrkA expression upon T cell receptor activation, paracrine NGF dampens T cell receptor signaling and effector function. Inhibiting NGF, either through genetic modification or with the tropomyosin receptor kinase inhibitor larotrectinib, renders melanomas susceptible to immune checkpoint blockade therapy and fosters long-term immunity by activating memory T cells with low affinity. These results identify the NGF-TrkA axis as an important suppressor of anti-tumor immunity and suggest larotrectinib might be repurposed for immune sensitization. Moreover, by enlisting low-affinity T cells, anti-NGF reduces acquired resistance to immune checkpoint blockade and prevents melanoma recurrence.


Assuntos
Melanoma , Receptor de Fator de Crescimento Neural , Humanos , Receptor de Fator de Crescimento Neural/genética , Receptor de Fator de Crescimento Neural/metabolismo , Fator de Crescimento Neural/genética , Fator de Crescimento Neural/metabolismo , Tropomiosina , Melanoma/terapia , Receptor trkA/genética , Receptor trkA/metabolismo , Citoproteção , Inibidores de Checkpoint Imunológico , Células T de Memória , Terapia de Imunossupressão , Imunoterapia , Receptores de Antígenos de Linfócitos T
2.
Genes Dev ; 37(19-20): 929-943, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37932012

RESUMO

The mismatch repair (MMR) deficiency of cancer cells drives mutagenesis and offers a useful biomarker for immunotherapy. However, many MMR-deficient (MMR-d) tumors do not respond to immunotherapy, highlighting the need for alternative approaches to target MMR-d cancer cells. Here, we show that inhibition of the ATR kinase preferentially kills MMR-d cancer cells. Mechanistically, ATR inhibitor (ATRi) imposes synthetic lethality on MMR-d cells by inducing DNA damage in a replication- and MUS81 nuclease-dependent manner. The DNA damage induced by ATRi is colocalized with both MSH2 and PCNA, suggesting that it arises from DNA structures recognized by MMR proteins during replication. In syngeneic mouse models, ATRi effectively reduces the growth of MMR-d tumors. Interestingly, the antitumor effects of ATRi are partially due to CD8+ T cells. In MMR-d cells, ATRi stimulates the accumulation of nascent DNA fragments in the cytoplasm, activating the cGAS-mediated interferon response. The combination of ATRi and anti-PD-1 antibody reduces the growth of MMR-d tumors more efficiently than ATRi or anti-PD-1 alone, showing the ability of ATRi to augment the immunotherapy of MMR-d tumors. Thus, ATRi selectively targets MMR-d tumor cells by inducing synthetic lethality and enhancing antitumor immunity, providing a promising strategy to complement and augment MMR deficiency-guided immunotherapy.


Assuntos
Linfócitos T CD8-Positivos , Reparo de Erro de Pareamento de DNA , Animais , Camundongos , Reparo de Erro de Pareamento de DNA/genética , Mutações Sintéticas Letais , DNA , Imunoterapia
3.
Cell ; 151(5): 927-9, 2012 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-23178113

RESUMO

An unexpected role for a Mediator subunit, MED12, in resistance to multiple anticancer agents is revealed by Huang et al. Loss of MED12 confers drug resistance by activating transforming growth factor b (TGF-b) signaling. Inhibition of the TGF-b pathway resensitizes cells to therapeutic drugs, suggesting a new combinatorial cancer treatment.

4.
PLoS Genet ; 20(9): e1011393, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39264939

RESUMO

Holometabolous insects undergo morphological remodeling from larvae to pupae and to adults with typical changes in the cuticle; however, the mechanism is unclear. Using the lepidopteran agricultural insect Helicoverpa armigera, cotton bollworm, as a model, we revealed that the transcription factor RUNT-like (encoded by Runt-like) regulates the development of the pupal cuticle via promoting a pupal cuticle protein gene (HaPcp) expression. The HaPcp was highly expressed in the epidermis and wing during metamorphosis and was found being involved in pupal cuticle development by RNA interference (RNAi) analysis in larvae. Runt-like was also strongly upregulated in the epidermis and wing during metamorphosis. Knockdown of Runt-like produced similar phenomena, a failure of abdomen yellow envelope and wing formation, to those following HaPcp knockdown. The insect molting hormone 20-hydroxyecdysonen (20E) upregulated HaPcp transcription via RUNT-like. 20E upregulated Runt-like transcription via nuclear receptor EcR and the transcription factor FOXO. Together, RUNT-like and HaPCP are involved in pupal cuticle development during metamorphosis under 20E regulation.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Insetos , Mariposas , Animais , Ecdisterona/metabolismo , Epiderme/metabolismo , Epiderme/crescimento & desenvolvimento , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Larva/crescimento & desenvolvimento , Larva/genética , Larva/metabolismo , Metamorfose Biológica , Muda/genética , Mariposas/crescimento & desenvolvimento , Mariposas/genética , Mariposas/metabolismo , Pupa/crescimento & desenvolvimento , Pupa/genética , Pupa/metabolismo , Interferência de RNA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Asas de Animais/crescimento & desenvolvimento , Asas de Animais/metabolismo
5.
Proc Natl Acad Sci U S A ; 120(44): e2304966120, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37878720

RESUMO

Messenger RNA (mRNA)-based therapeutics are transforming the landscapes of medicine, yet targeted delivery of mRNA to specific cell types while minimizing off-target accumulation remains challenging for mRNA-mediated therapy. In this study, we report an innovative design of a cationic lipid- and hyaluronic acid-based, dual-targeted mRNA nanoformulation that can display the desirable stability and efficiently transfect the targeted proteins into lung tissues. More importantly, the optimized dual-targeted mRNA nanoparticles (NPs) can not only accumulate primarily in lung tumor cells and inflammatory macrophages after inhalation delivery but also efficiently express any desirable proteins (e.g., p53 tumor suppressor for therapy, as well as luciferase and green fluorescence protein for imaging as examples in this study) and achieve efficacious lung tissue transfection in vivo. Overall, our findings provide proof-of-principle evidence for the design and use of dual-targeted mRNA NPs in homing to specific cell types to up-regulate target proteins in lung tissues, which may hold great potential for the future development of mRNA-based inhaled medicines or vaccines in treating various lung-related diseases.


Assuntos
Nanopartículas , Neoplasias , RNA Mensageiro/genética , Transfecção , Pulmão , Macrófagos
6.
Proc Natl Acad Sci U S A ; 120(24): e2216574120, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37276415

RESUMO

The immune deficiency (IMD) pathway is critical for elevating host immunity in both insects and crustaceans. The IMD pathway activation in insects is mediated by peptidoglycan recognition proteins, which do not exist in crustaceans, suggesting a previously unidentified mechanism involved in crustacean IMD pathway activation. In this study, we identified a Marsupenaeus japonicus B class type III scavenger receptor, SRB2, as a receptor for activation of the IMD pathway. SRB2 is up-regulated upon bacterial challenge, while its depletion exacerbates bacterial proliferation and shrimp mortality via abolishing the expression of antimicrobial peptides. The extracellular domain of SRB2 recognizes bacterial lipopolysaccharide (LPS), while its C-terminal intracellular region containing a cryptic RHIM-like motif interacts with IMD, and activates the pathway by promoting nuclear translocation of RELISH. Overexpressing shrimp SRB2 in Drosophila melanogaster S2 cells potentiates LPS-induced IMD pathway activation and diptericin expression. These results unveil a previously unrecognized SRB2-IMD axis responsible for antimicrobial peptide induction and restriction of bacterial infection in crustaceans and provide evidence of biological diversity of IMD signaling in animals. A better understanding of the innate immunity of crustaceans will permit the optimization of prevention and treatment strategies against the arising shrimp diseases.


Assuntos
Crustáceos , Animais , Crustáceos/genética , Crustáceos/imunologia , Crustáceos/metabolismo , Crustáceos/microbiologia , Drosophila melanogaster , Lipopolissacarídeos , Receptores de Reconhecimento de Padrão/genética , Receptores de Reconhecimento de Padrão/metabolismo , Regulação para Cima , Vibrio , Transdução de Sinais , Humanos
7.
J Biol Chem ; 300(3): 105704, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309506

RESUMO

Selective gene expression in cells in physiological or pathological conditions is important for the growth and development of organisms. Acetylation of histone H4 at K16 (H4K16ac) catalyzed by histone acetyltransferase 8 (KAT8) is known to promote gene transcription; however, the regulation of KAT8 transcription and the mechanism by which KAT8 acetylates H4K16ac to promote specific gene expression are unclear. Using the lepidopteran insect Helicoverpa armigera as a model, we reveal that the transcription factor FOXO promotes KAT8 expression and recruits KAT8 to the promoter region of autophagy-related gene 8 (Atg8) to increase H4 acetylation at that location, enabling Atg8 transcription under the steroid hormone 20-hydroxyecdysone (20E) regulation. H4K16ac levels are increased in the midgut during metamorphosis, which is consistent with the expression profiles of KAT8 and ATG8. Knockdown of Kat8 using RNA interference results in delayed pupation and repression of midgut autophagy and decreases H4K16ac levels. Overexpression of KAT8-GFP promotes autophagy and increases H4K16ac levels. FOXO, KAT8, and H4K16ac colocalized at the FOXO-binding region to promote Atg8 transcription under 20E regulation. Acetylated FOXO at K180 and K183 catalyzed by KAT8 promotes gene transcription for autophagy. 20E via FOXO promotes Kat8 transcription. Knockdown or overexpression of FOXO appeared to give similar results as knockdown or overexpression of KAT8. Therefore, FOXO upregulates KAT8 expression and recruits KAT8 to the promoter region of Atg8, where the KAT8 induces H4 acetylation to promote Atg8 transcription for autophagy under 20E regulation. This study reveals the mechanism that KAT8 promotes transcription of a specific gene.


Assuntos
Autofagia , Ecdisterona , Helicoverpa armigera , Histona Acetiltransferases , Histonas , Processamento de Proteína Pós-Traducional , Acetilação , Autofagia/genética , Ecdisterona/metabolismo , Regiões Promotoras Genéticas , Helicoverpa armigera/genética , Helicoverpa armigera/metabolismo , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Histonas/metabolismo
8.
J Virol ; 98(7): e0043324, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38888346

RESUMO

The cellular endosomal sorting complex required for transport (ESCRT) system comprises five distinct components and is involved in many different physiological processes. Recent studies have shown that different viruses rely upon the host ESCRT system for viral infection. However, whether this system is involved in white spot syndrome virus (WSSV) infection remains unclear. Here, we identified 24 homologs of ESCRT subunits in kuruma shrimp, Marsupenaeus japonicus, and found that some key components were strongly upregulated in shrimp after WSSV infection. Knockdown of key components of the ESCRT system using RNA interference inhibited virus replication, suggesting that the ESCRT system is beneficial for WSSV infection. We further focused on TSG101, a crucial member of the ESCRT-I family that plays a central role in recognizing cargo and activating the ESCRT-II and ESCRT-III complexes. TSG101 colocalized with WSSV in hemocytes. The addition of N16 (a TSG101 inhibitor) markedly decreased WSSV replication. TSG101 and ALIX of the ESCRT system interact with WSSV envelope proteins. The host proteins TSG101, RAB5, and RAB7, the viral protein VP28, and DNA were detected in endosomes isolated from hemocytes of WSSV-infected shrimp. Knockdown of Rab5 and Rab7 expression reduced viral replication. Taken together, these results suggest that the ESCRT system is hijacked by WSSV for transport through the early to late endosome pathway. Our work identified a novel requirement for the intracellular trafficking and infection of WSSV, and provided novel therapeutic targets for the prevention and control of WSSV in shrimp aquaculture. IMPORTANCE: Viruses utilize the ESCRT machinery in a variety of strategies for their replication and infection. This study revealed that the interaction of ESCRT complexes with WSSV envelope proteins plays a crucial role in WSSV infection in shrimp. The ESCRT system is conserved in the shrimp Marsupenaeus japonicus, and 24 homologs of the ESCRT system were identified in the shrimp. WSSV exploits the ESCRT system for transport and propagation via the interaction of envelope proteins with host TSG101 and ALIX in an endosome pathway-dependent manner. Understanding the underlying mechanisms of WSSV infection is important for disease control and breeding in shrimp aquaculture.


Assuntos
Proteínas de Ligação a DNA , Complexos Endossomais de Distribuição Requeridos para Transporte , Penaeidae , Replicação Viral , Vírus da Síndrome da Mancha Branca 1 , Animais , Vírus da Síndrome da Mancha Branca 1/fisiologia , Vírus da Síndrome da Mancha Branca 1/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Penaeidae/virologia , Penaeidae/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Endossomos/metabolismo , Endossomos/virologia , Hemócitos/virologia , Hemócitos/metabolismo , Interações Hospedeiro-Patógeno , Proteínas do Envelope Viral/metabolismo , Proteínas do Envelope Viral/genética , Interferência de RNA
9.
Mol Psychiatry ; 29(8): 2308-2320, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38459194

RESUMO

Cognitive and behavioral rigidity are observed in various psychiatric diseases, including in autism spectrum disorder (ASD). However, the underlying mechanism remains to be elucidated. In this study, we found that neuroligin-3 (NL3) R451C knockin mouse model of autism (KI mice) exhibited deficits in behavioral flexibility in choice selection tasks. Single-unit recording of medium spiny neuron (MSN) activity in the nucleus accumbens (NAc) revealed altered encoding of decision-related cue and impaired updating of choice anticipation in KI mice. Additionally, fiber photometry demonstrated significant disruption in dynamic mesolimbic dopamine (DA) signaling for reward prediction errors (RPEs), along with reduced activity in medial prefrontal cortex (mPFC) neurons projecting to the NAc in KI mice. Interestingly, NL3 re-expression in the mPFC, but not in the NAc, rescued the deficit of flexible behaviors and simultaneously restored NAc-MSN encoding, DA dynamics, and mPFC-NAc output in KI mice. Taken together, this study reveals the frontostriatal circuit dysfunction underlying cognitive inflexibility and establishes a critical role of the mPFC NL3 deficiency in this deficit in KI mice. Therefore, these findings provide new insights into the mechanisms of cognitive and behavioral inflexibility and potential intervention strategies.


Assuntos
Moléculas de Adesão Celular Neuronais , Cognição , Modelos Animais de Doenças , Dopamina , Proteínas de Membrana , Proteínas do Tecido Nervoso , Núcleo Accumbens , Córtex Pré-Frontal , Animais , Camundongos , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Núcleo Accumbens/metabolismo , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/fisiopatologia , Masculino , Dopamina/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Cognição/fisiologia , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/fisiopatologia , Neurônios/metabolismo , Recompensa , Corpo Estriado/metabolismo , Técnicas de Introdução de Genes/métodos , Vias Neurais/metabolismo , Vias Neurais/fisiopatologia , Transtorno Autístico/genética , Transtorno Autístico/fisiopatologia , Transtorno Autístico/metabolismo , Camundongos Endogâmicos C57BL , Comportamento de Escolha/fisiologia
10.
PLoS Genet ; 18(6): e1010229, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35696369

RESUMO

The regulation of glycometabolism homeostasis is vital to maintain health and development of animal and humans; however, the molecular mechanisms by which organisms regulate the glucose metabolism homeostasis from a feeding state switching to a non-feeding state are not fully understood. Using the holometabolous lepidopteran insect Helicoverpa armigera, cotton bollworm, as a model, we revealed that the steroid hormone 20-hydroxyecdysone (20E) upregulated the expression of transcription factor Krüppel-like factor (identified as Klf15) to promote macroautophagy/autophagy, apoptosis and gluconeogenesis during metamorphosis. 20E via its nuclear receptor EcR upregulated Klf15 transcription in the fat body during metamorphosis. Knockdown of Klf15 using RNA interference delayed pupation and repressed autophagy and apoptosis of larval fat body during metamorphosis. KLF15 promoted autophagic flux and transiting to apoptosis. KLF15 bound to the KLF binding site (KLF bs) in the promoter of Atg8 (autophagy-related gene 8/LC3) to upregulate Atg8 expression. Knockdown Atg8 reduced free fatty acids (FFAs), glycerol, free amino acids (FAAs) and glucose levels. However, knockdown of Klf15 accumulated FFAs, glycerol, and FAAs. Glycolysis was switched to gluconeogenesis, trehalose and glycogen synthesis were changed to degradation during metamorphosis, which were accompanied by the variation of the related genes expression. KLF15 upregulated phosphoenolpyruvate carboxykinase (Pepck) expression by binding to KLF bs in the Pepck promoter for gluconeogenesis, which utilised FFAs, glycerol, and FAAs directly or indirectly to increase glucose in the hemolymph. Taken together, 20E via KLF15 integrated autophagy and gluconeogenesis by promoting autophagy-related and gluconeogenesis-related genes expression.


Assuntos
Ecdisterona , Mariposas , Animais , Autofagia/genética , Ecdisterona/metabolismo , Técnicas de Silenciamento de Genes , Gluconeogênese/genética , Glucose/metabolismo , Glicerol/metabolismo , Homeostase/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Mariposas/genética
11.
BMC Biol ; 22(1): 171, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39135168

RESUMO

BACKGROUND: Free fatty acids (FFAs) play vital roles as energy sources and substrates in organisms; however, the molecular mechanism regulating the homeostasis of FFA levels in various circumstances, such as feeding and nonfeeding stages, is not fully clarified. Holometabolous insects digest dietary triglycerides (TAGs) during larval feeding stages and degrade stored TAGs in the fat body during metamorphosis after feeding cessation, which presents a suitable model for this study. RESULTS: This study reported that two lipases are differentially regulated by hormones to maintain the homeostasis of FFA levels during the feeding and nonfeeding stages using the lepidopteran insect cotton bollworm Helicoverpa armigera as a model. Lipase member H-A-like (Lha-like), related to human pancreatic lipase (PTL), was abundantly expressed in the midgut during the feeding stage, while the monoacylglycerol lipase ABHD12-like (Abhd12-like), related to human monoacylglycerol lipase (MGL), was abundantly expressed in the fat body during the nonfeeding stage. Lha-like was upregulated by juvenile hormone (JH) via the JH intracellular receptor methoprene-tolerant 1 (MET1), and Abhd12-like was upregulated by 20-hydroxyecdysone (20E) via forkhead box O (FOXO) transcription factor. Knockdown of Lha-like decreased FFA levels in the hemolymph and reduced TAG levels in the fat body. Moreover, lipid droplets (LDs) were small, the brain morphology was abnormal, the size of the brain was small, and the larvae showed the phenotype of delayed pupation, small pupae, and delayed tissue remodeling. Knockdown of Abhd12-like decreased FFA levels in the hemolymph; however, TAG levels increased in the fat body, and LDs remained large. The development of the brain was arrested at the larval stage, and the larvae showed a delayed pupation phenotype and delayed tissue remodeling. CONCLUSIONS: The differential regulation of lipases expression by different hormones determines FFAs homeostasis and different TAG levels in the fat body during the feeding larval growth and nonfeeding stages of metamorphosis in the insect. The homeostasis of FFAs supports insect growth, brain development, and metamorphosis.


Assuntos
Encéfalo , Ácidos Graxos não Esterificados , Homeostase , Animais , Encéfalo/metabolismo , Encéfalo/crescimento & desenvolvimento , Ácidos Graxos não Esterificados/metabolismo , Lipase/metabolismo , Lipase/genética , Mariposas/crescimento & desenvolvimento , Mariposas/fisiologia , Mariposas/metabolismo , Larva/crescimento & desenvolvimento , Larva/metabolismo , Hormônios Juvenis/metabolismo , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Metamorfose Biológica/fisiologia , Ecdisterona/metabolismo
12.
Clin Immunol ; 263: 110205, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38575044

RESUMO

Increasing clinical data show that the imbalance of host metallome is closely associated with different kinds of disease, however, the intrinsic mechanisms of action of metals in immunity and pathogenesis of disease remain largely undefined. There is lack of multiplexed profiling system to integrate the metalloproteome-immunoproteome information at systemic level for exploring the roles of metals in immunity and disease pathogenesis. In this study, we build up a metal-coding assisted multiplexed proteome assay platform for serum metalloproteomic and immunoproteomic profiling. By taking COVID-19 as a showcase, we unbiasedly uncovered the most evident modulation of iron-related proteins, i.e., Ft and Tf, in serum of severe COVID-19 patients, and the value of Ft/Tf could work as a robust biomarker for COVID-19 severity stratification, which overtakes the well-established clinical risk factors (cytokines). We further uncovered a tight association of transferrin with inflammation mediator IL-10 in COVID-19 patients, which was proved to be mainly governed by the monocyte/macrophage of liver, shedding light on new pathophysiological and immune regulatory mechanisms of COVID-19 disease. We finally validated the beneficial effects of iron chelators as anti-viral agents in SARS-CoV-2-infected K18-hACE2 mice through modulation of iron dyshomeostasis and alleviating inflammation response. Our findings highlight the critical role of liver-mediated iron dysregulation in COVID-19 disease severity, providing solid evidence on the involvement of iron-related proteins in COVID-19 pathophysiology and immunity.


Assuntos
COVID-19 , Ferro , Proteoma , SARS-CoV-2 , COVID-19/imunologia , Humanos , Animais , SARS-CoV-2/imunologia , Camundongos , Ferro/metabolismo , Proteômica/métodos , Transferrina/metabolismo , Metaloproteínas/imunologia , Metaloproteínas/metabolismo , Masculino , Feminino , Biomarcadores/sangue , Biomarcadores/metabolismo , Quelantes de Ferro/uso terapêutico , Quelantes de Ferro/farmacologia , Interleucina-10/imunologia , Interleucina-10/metabolismo , Pessoa de Meia-Idade
13.
Br J Haematol ; 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39367620

RESUMO

Due to the limited real-world research on the application of avatrombopag (AVA) for immune thrombocytopenia (ITP) in China, we evaluated the effectiveness and safety of AVA in clinical practice. We included 121 adult ITP patients treated with AVA across three medical centres. Based on the reasons for choosing AVA, these patients were divided into eltrombopag (ELT)/hetrombopag (HET) intolerance group (IG), and ELT/HET unresponsive group (UG). Compared with UG, more patients in IG had a history of liver disease and received fewer treatments before AVA. Amongst all patients, 83% had platelet response (≥30 × 109/L) after AVA and 62% achieved complete response (≥100 × 109/L, CR). Sixty-two percent in IG and 56% in UG were able to discontinue more than one concomitant ITP medication. A total of 17 patients underwent multiple switches of thrombopoietin receptor agonists (TPO-RAs), resulting in an 88% platelet response rate. Sixty-three patients discontinued AVA, 27% were due to unaffordability. AVA was well tolerated in most patients. In the ITP population, AVA proved effective and safe, particularly in patients intolerant or unresponsive to ELT/HET. Patients benefited from TPO-RAs switches, particularly those undergoing multiple switches. However, many patients struggled with the long-term financial burden of AVA.

14.
Gastroenterology ; 164(3): 424-438, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36436593

RESUMO

BACKGROUND & AIMS: In eukaryotes, the ubiquitin-proteasome system and the autophagy-lysosome pathway are essential for maintaining cellular proteostasis and associated with cancer progression. Our previous studies have demonstrated that phosphatase and tensin homolog (PTEN), one of the most frequently mutated genes in human cancers, limits proteasome abundance and determines chemosensitivity to proteasome inhibitors in cholangiocarcinoma (CCA). However, whether PTEN regulates the lysosome pathway remains unclear. METHODS: We tested the effects of PTEN on lysosome biogenesis and exosome secretion using loss- and gain-of-function strategies in CCA cell lines. Using in vitro dephosphorylation assays, we explored the regulatory mechanism between PTEN and the key regulator of lysosome biogenesis, transcription factor EB (TFEB). Using the migration assays, invasion assays, and trans-splenic liver metastasis mouse models, we evaluated the function of PTEN deficiency, TFEB-mediated lysosome biogenesis, and exosome secretion on tumor metastasis. Moreover, we investigated the clinical significance of PTEN expression and exosome secretion by retrospective analysis. RESULTS: PTEN facilitated lysosome biogenesis and acidification through its protein phosphatase activity to dephosphorylate TFEB at Ser211. Notably, PTEN deficiency increased exosome secretion by reducing lysosome-mediated degradation of multi-vesicular bodies, which further facilitated the proliferation and invasion of CCA. TFEB agonist curcumin analog C1 restrained the metastatic phenotype caused by PTEN deficiency in mouse models, and we highlighted the correlation between PTEN deficiency and exosome secretion in clinical cohorts. CONCLUSIONS: In CCA, PTEN deficiency impairs lysosome biogenesis to facilitate exosome secretion and cancer metastasis in a TFEB phosphorylation-dependent manner.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Colangiocarcinoma , Exossomos , PTEN Fosfo-Hidrolase , Animais , Humanos , Camundongos , Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Colangiocarcinoma/metabolismo , Modelos Animais de Doenças , Exossomos/metabolismo , Lisossomos/fisiologia , Complexo de Endopeptidases do Proteassoma , PTEN Fosfo-Hidrolase/metabolismo , Estudos Retrospectivos
15.
Development ; 148(5)2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33692089

RESUMO

Animal steroid hormones initiate signaling by passive diffusion into cells and binding to their nuclear receptors to regulate gene expression. Animal steroid hormones can initiate signaling via G protein-coupled receptors (GPCRs); however, the underlying mechanisms are unclear. Here, we show that a newly discovered ecdysone-responsive GPCR, ErGPCR-3, transmits the steroid hormone 20-hydroxyecdysone (20E) signal by binding 20E and promoting its entry into cells in the lepidopteran insect Helicoverpa armigera Knockdown of ErGPCR-3 in larvae caused delayed and abnormal pupation, inhibited remodeling of the larval midgut and fat body, and repressed 20E-induced gene expression. Also, 20E induced both the interaction of ErGPCR-3 with G proteins and rapid intracellular increase in calcium, cAMP and protein phosphorylation. ErGPCR-3 was endocytosed by GPCR kinase 2-mediated phosphorylation, and interacted with ß-arrestin-1 and clathrin, to terminate 20E signaling under 20E induction. We found that 20E bound to ErGPCR-3 and induced the ErGPCR-3 homodimer to form a homotetramer, which increased 20E entry into cells. Our study revealed that homotetrameric ErGPCR-3 functions as a cell membrane receptor and increases 20E diffusion into cells to transmit the 20E signal and promote metamorphosis.


Assuntos
Ecdisterona/farmacologia , Proteínas de Insetos/metabolismo , Metamorfose Biológica/efeitos dos fármacos , Receptores Acoplados a Proteínas G/metabolismo , Animais , Clatrina/metabolismo , Ecdisterona/química , Ecdisterona/metabolismo , Endocitose , Proteínas de Insetos/antagonistas & inibidores , Proteínas de Insetos/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Mariposas/crescimento & desenvolvimento , Mariposas/metabolismo , Fosforilação/efeitos dos fármacos , Ligação Proteica , Multimerização Proteica/efeitos dos fármacos , Interferência de RNA , RNA de Cadeia Dupla/metabolismo , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
16.
Ann Rheum Dis ; 83(10): 1345-1357, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-38777379

RESUMO

OBJECTIVE: Tissue-resident memory cells (Trm) are a subset of T cells residing persistently and long-term within specific tissues that contribute to persistent inflammation and tissue damage. We characterised the phenotype and function of Trm and the role of CD103 in primary Sjogren's syndrome (pSS). METHODS: In both pSS and non-pSS sicca syndrome patients, we examined Trm frequency, cytokine production in salivary glands (SG) and peripheral blood (PB). We also analysed Trm-related gene expression in SG biopsies through bulk and single-cell RNA sequencing (scRNAseq). Additionally, we investigated Trm properties in an immunisation-induced animal model of pSS (experimental SS, ESS) mouse model and assessed the effects of Trm inhibition via intraglandular anti-CD103 monoclonal antibody administration. RESULTS: Transcriptomic pSS SG showed an upregulation of genes associated with tissue recruitment and long-term survival of Trm cells, confirmed by a higher frequency of CD8+CD103+CD69+ cells in pSS SG, compared with non-specific sialadenitis (nSS). In SG, CD8+ CD103+ Trm contributed to the secretion of granzyme-B and interferon-γ, CD8+ Trm cells were localised within inflammatory infiltrates, where PD1+CD8+ T cells were also increased compared with nSS and MALT lymphoma. scRNAseq of PB and pSS SG T cells confirmed expression of CD69, ITGAE, GZMB, GZMK and HLA-DRB1 among CD3+CD8+ SG T cells. In the SG of ESS, CD8+CD69+CD103+ Trm producing Granzyme B progressively expanded. However, intraglandular blockade of CD103 in ESS reduced Trm, reduced glandular damage and improved salivary flow. CONCLUSIONS: CD103+CD8+Trm cells are expanded in the SG of pSS and ESS, participate in tissue inflammation and can be therapeutically targeted.


Assuntos
Antígenos CD , Linfócitos T CD8-Positivos , Cadeias alfa de Integrinas , Células T de Memória , Glândulas Salivares , Síndrome de Sjogren , Cadeias alfa de Integrinas/metabolismo , Cadeias alfa de Integrinas/imunologia , Síndrome de Sjogren/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Células T de Memória/imunologia , Antígenos CD/imunologia , Humanos , Camundongos , Glândulas Salivares/imunologia , Feminino , Modelos Animais de Doenças , Pessoa de Meia-Idade , Masculino , Memória Imunológica/imunologia , Granzimas/metabolismo , Sialadenite/imunologia , Adulto
17.
PLoS Pathog ; 18(9): e1010808, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36067252

RESUMO

Previous studies have shown that the mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway has antiviral functions or is beneficial for viral replication, however, the detail mechanisms by which mTORC1 enhances viral infection remain unclear. Here, we found that proliferation of white spot syndrome virus (WSSV) was decreased after knockdown of mTor (mechanistic target of rapamycin) or injection inhibitor of mTORC1, rapamycin, in Marsupenaeus japonicus, which suggests that mTORC1 is utilized by WSSV for its replication in shrimp. Mechanistically, WSSV infects shrimp by binding to its receptor, polymeric immunoglobulin receptor (pIgR), and induces the interaction of its intracellular domain with Calmodulin. Calmodulin then promotes the activation of protein kinase B (AKT) by interaction with the pleckstrin homology (PH) domain of AKT. Activated AKT phosphorylates mTOR and results in the activation of the mTORC1 signaling pathway to promote its downstream effectors, ribosomal protein S6 kinase (S6Ks), for viral protein translation. Moreover, mTORC1 also phosphorylates eukaryotic translation initiation factor 4E-binding protein 1 (4EBP1), which will result in the separation of 4EBP1 from eukaryotic translation initiation factor 4E (eIF4E) for the translation of viral proteins in shrimp. Our data revealed a novel pathway for WSSV proliferation in shrimp and indicated that mTORC1 may represent a potential clinical target for WSSV control in shrimp aquaculture.


Assuntos
Receptores de Imunoglobulina Polimérica , Vírus da Síndrome da Mancha Branca 1 , Antivirais/farmacologia , Calmodulina/metabolismo , Fator de Iniciação 4E em Eucariotos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Imunoglobulina Polimérica/metabolismo , Proteínas Quinases S6 Ribossômicas/metabolismo , Proteínas Quinases S6 Ribossômicas/farmacologia , Transdução de Sinais , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Proteínas Virais/metabolismo , Replicação Viral , Vírus da Síndrome da Mancha Branca 1/metabolismo
18.
Hepatology ; 77(6): 1998-2015, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36815382

RESUMO

BACKGROUND AND AIMS: Liver fibrosis results from the accumulation of myofibroblasts (MFs) derived from quiescent HSCs, and yes-associated protein (YAP) controls this state transition. Although fibrosis is also influenced by HSC death and senescence, whether YAP regulates these processes and whether this could be leveraged to treat liver fibrosis are unknown. APPROACH AND RESULTS: YAP activity was manipulated in MF-HSCs to determine how YAP impacts susceptibility to pro-apoptotic senolytic agents or ferroptosis. Effects of senescence on YAP activity and susceptibility to apoptosis versus ferroptosis were also examined. CCl 4 -treated mice were treated with a ferroptosis inducer or pro-apoptotic senolytic to determine the effects on liver fibrosis. YAP was conditionally disrupted in MFs to determine how YAP activity in MF-HSC affects liver fibrosis in mouse models. Silencing YAP in cultured MF-HSCs induced HSC senescence and vulnerability to senolytics, and promoted ferroptosis resistance. Conversely, inducing HSC senescence suppressed YAP activity, increased sensitivity to senolytics, and decreased sensitivity to ferroptosis. Single-cell analysis of HSCs from fibrotic livers revealed heterogeneous sensitivity to ferroptosis, apoptosis, and senescence. In mice with chronic liver injury, neither the ferroptosis inducer nor senolytic improved fibrosis. However, selectively depleting YAP in MF-HSCs induced senescence and decreased liver injury and fibrosis. CONCLUSION: YAP determines whether MF-HSCs remain activated or become senescent. By regulating this state transition, Yap controls both HSC fibrogenic activity and susceptibility to distinct mechanisms for cell death. MF-HSC-specific YAP depletion induces senescence and protects injured livers from fibrosis. Clarifying determinants of HSC YAP activity may facilitate the development of novel anti-fibrotic therapies.


Assuntos
Cirrose Hepática , Senoterapia , Camundongos , Animais , Cirrose Hepática/patologia , Fígado/patologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Morte Celular , Células Estreladas do Fígado/metabolismo
19.
Hepatology ; 78(4): 1209-1222, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37036206

RESUMO

BACKGROUND AND AIMS: Senescent hepatocytes accumulate in parallel with fibrosis progression during NASH. The mechanisms that enable progressive expansion of nonreplicating cell populations and the significance of that process in determining NASH outcomes are unclear. Senescing cells upregulate thrombomodulin-protease-activated receptor-1 (THBD-PAR1) signaling to remain viable. Vorapaxar blocks the activity of that pathway. We used vorapaxar to determine if and how THBD-PAR1 signaling promotes fibrosis progression in NASH. APPROACH AND RESULTS: We evaluated the THBD-PAR1 pathway in liver biopsies from patients with NAFLD. Chow-fed mice were treated with viral vectors to overexpress p16 in hepatocytes and induce replicative senescence. Effects on the THBD-PAR1 axis and regenerative capacity were assessed; the transcriptome of p16-overexpressing hepatocytes was characterized, and we examined how conditioned medium from senescent but viable (dubbed "undead") hepatocytes reprograms HSCs. Mouse models of NASH caused by genetic obesity or Western diet/CCl 4 were treated with vorapaxar to determine effects on hepatocyte senescence and liver damage. Inducing senescence upregulates the THBD-PAR1 signaling axis in hepatocytes and induces their expression of fibrogenic factors, including hedgehog ligands. Hepatocyte THBD-PAR1 signaling increases in NAFLD and supports sustained hepatocyte senescence that limits effective liver regeneration and promotes maladaptive repair. Inhibiting PAR1 signaling with vorapaxar interrupts this process, reduces the burden of 'undead' senescent cells, and safely improves NASH and fibrosis despite ongoing lipotoxic stress. CONCLUSION: The THBD-PAR1 signaling axis is a novel therapeutic target for NASH because blocking this pathway prevents accumulation of senescing but viable hepatocytes that generate factors that promote maladaptive liver repair.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Receptor PAR-1/metabolismo , Trombomodulina/metabolismo , Hepatócitos/metabolismo , Fígado/patologia , Fibrose , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
20.
Plant Physiol ; 193(2): 1244-1262, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37427874

RESUMO

Wurfbainia longiligularis and Wurfbainia villosa are both rich in volatile terpenoids and are 2 primary plant sources of Fructus Amomi used for curing gastrointestinal diseases. Metabolomic profiling has demonstrated that bornyl diphosphate (BPP)-related terpenoids are more abundant in the W. villosa seeds and have a wider tissue distribution in W. longiligularis. To explore the genetic mechanisms underlying the volatile terpenoid divergence, a high-quality chromosome-level genome of W. longiligularis (2.29 Gb, contig N50 of 80.39 Mb) was assembled. Functional characterization of 17 terpene synthases (WlTPSs) revealed that WlBPPS, along with WlTPS 24/26/28 with bornyl diphosphate synthase (BPPS) activity, contributes to the wider tissue distribution of BPP-related terpenoids in W. longiligularis compared to W. villosa. Furthermore, transgenic Nicotiana tabacum showed that the GCN4-motif element positively regulates seed expression of WvBPPS and thus promotes the enrichment of BPP-related terpenoids in W. villosa seeds. Systematic identification and analysis of candidate TPS in 29 monocot plants from 16 families indicated that substantial expansion of TPS-a and TPS-b subfamily genes in Zingiberaceae may have driven increased diversity and production of volatile terpenoids. Evolutionary analysis and functional identification of BPPS genes showed that BPP-related terpenoids may be distributed only in the Zingiberaceae of monocot plants. This research provides valuable genomic resources for breeding and improving Fructus Amomi with medicinal and edible value and sheds light on the evolution of terpenoid biosynthesis in Zingiberaceae.


Assuntos
Alquil e Aril Transferases , Terpenos , Humanos , Terpenos/metabolismo , Difosfatos , Melhoramento Vegetal , Frutas/genética , Frutas/metabolismo , Plantas/metabolismo , Alquil e Aril Transferases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA