Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202403597, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38752455

RESUMO

Marine ladder polyethers have attracted the attention of chemists and biologists because of their potent biological activities. Synthetic chemists have attempted to construct their polyether frameworks by epoxide ring-opening cascades, as Nakanishi hypothesis describes. However, Baldwin's rules of ring closure state that exo-selective intramolecular cyclization of epoxy alcohols is preferred over endo-selective cyclization. Herein, we investigated epoxide ring-opening cascades of polyepoxy alcohols in [EMIM]BF4/PFTB (1-ethyl-3-methylimidazolium tetrafluoroborate /perfluoro-tert-butyl alcohol) and found that all-endo products were formed via epoxide-to-epoxonium ring-opening cyclizations (not restricted by Baldwin's rules, which only apply to intramolecular hydroxyl-to-epoxide cyclizations). We determined that the key factor enabling polyepoxy alcohols to undergo a high proportion of all-endo-selective cyclizations was inhibition of exo-selective hydroxyl-to-epoxide cyclization starting from the terminal hydroxyl group of a polyepoxy alcohol. By introducing a slow-release protecting group to the terminal hydroxyl group, we could markedly increase the cyclization yields of polyether fragments with hydrogen atoms at the ring junctions. For the first time, we constructed consecutively fused six-membered-ring and fused seven-, eight-, and nine-membered-ring polyether fragments by epoxide-to-epoxonium ring-opening cyclizations through the addition of a suitable Lewis acid. We also suggest that the biosynthesis of marine ladder polyethers may proceed via epoxide-to-epoxonium ring-opening cyclization of polyepoxide.

2.
RSC Adv ; 14(17): 11986-11991, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38623291

RESUMO

α-Aryl-substituted pyrrolidine moiety is found in many natural alkaloids. Starting from pyrrolidine, we were able to synthesize α-aryl-substituted pyrrolidines in one step using quinone monoacetal as the oxidizing agent and DABCO as the base. We also discovered the reaction condition needed to efficiently remove the N-aryl moiety from the α-arylated product. When the above reaction was carried out without the addition of an aryl nucleophile, the reaction of pyrrolidine and quinone monoacetal in 2,2,2-trifluoroethanol afforded octahydro-dipyrroloquinoline in high yield, which has the same skeleton as that of natural product incargranine B.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA