Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 234
Filtrar
1.
Circ Res ; 134(5): 550-568, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38323433

RESUMO

BACKGROUND: Doxorubicin is an effective chemotherapeutic agent, but its use is limited by acute and chronic cardiotoxicity. Exercise training has been shown to protect against doxorubicin-induced cardiotoxicity, but the involvement of immune cells remains unclear. This study aimed to investigate the role of exercise-derived B cells in protecting against doxorubicin-induced cardiotoxicity and to further determine whether B cell activation and antibody secretion play a role in this protection. METHODS: Mice that were administered with doxorubicin (5 mg/kg per week, 20 mg/kg cumulative dose) received treadmill running exercise. The adoptive transfer of exercise-derived splenic B cells to µMT-/- (B cell-deficient) mice was performed to elucidate the mechanism of B cell regulation that mediated the effect of exercise. RESULTS: Doxorubicin-administered mice that had undergone exercise training showed improved cardiac function, and low levels of cardiac apoptosis, atrophy, and fibrosis, and had reduced cardiac antibody deposition and proinflammatory responses. Similarly, B cell pharmacological and genetic depletion alleviated doxorubicin-induced cardiotoxicity, which phenocopied the protection of exercise. In vitro performed coculture experiments confirmed that exercise-derived B cells reduced cardiomyocyte apoptosis and fibroblast activation compared with control B cells. Importantly, the protective effect of exercise on B cells was confirmed by the adoptive transfer of splenic B cells from exercised donor mice to µMT-/- recipient mice. However, blockage of Fc gamma receptor IIB function using B cell transplants from exercised Fc gamma receptor IIB-/- mice abolished the protection of exercise-derived B cells against doxorubicin-induced cardiotoxicity. Mechanistically, we found that Fc gamma receptor IIB, an important B cell inhibitory receptor, responded to exercise and increased B cell activation threshold, which participated in exercise-induced protection against doxorubicin-induced cardiotoxicity. CONCLUSIONS: Our results demonstrate that exercise training protects against doxorubicin-induced cardiotoxicity by upregulating Fc gamma receptor IIB expression in B cells, which plays an important anti-inflammatory role and participates in the protective effect of exercise against doxorubicin-induced cardiotoxicity.


Assuntos
Cardiotoxicidade , Miócitos Cardíacos , Camundongos , Animais , Cardiotoxicidade/metabolismo , Miócitos Cardíacos/metabolismo , Doxorrubicina/toxicidade , Apoptose
2.
Circulation ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38708602

RESUMO

BACKGROUND: Exercise-induced physiological cardiac growth regulators may protect the heart from ischemia/reperfusion (I/R) injury. Homeobox-containing 1 (Hmbox1), a homeobox family member, has been identified as a putative transcriptional repressor and is downregulated in the exercised heart. However, its roles in exercise-induced physiological cardiac growth and its potential protective effects against cardiac I/R injury remain largely unexplored. METHODS: We studied the function of Hmbox1 in exercise-induced physiological cardiac growth in mice after 4 weeks of swimming exercise. Hmbox1 expression was then evaluated in human heart samples from deceased patients with myocardial infarction and in the animal cardiac I/R injury model. Its role in cardiac I/R injury was examined in mice with adeno-associated virus 9 (AAV9) vector-mediated Hmbox1 knockdown and in those with cardiac myocyte-specific Hmbox1 ablation. We performed RNA sequencing, promoter prediction, and binding assays and identified glucokinase (Gck) as a downstream effector of Hmbox1. The effects of Hmbox1 together with Gck were examined in cardiomyocytes to evaluate their cell size, proliferation, apoptosis, mitochondrial respiration, and glycolysis. The function of upstream regulator of Hmbox1, ETS1, was investigated through ETS1 overexpression in cardiac I/R mice in vivo. RESULTS: We demonstrated that Hmbox1 downregulation was required for exercise-induced physiological cardiac growth. Inhibition of Hmbox1 increased cardiomyocyte size in isolated neonatal rat cardiomyocytes and human embryonic stem cell-derived cardiomyocytes but did not affect cardiomyocyte proliferation. Under pathological conditions, Hmbox1 was upregulated in both human and animal postinfarct cardiac tissues. Furthermore, both cardiac myocyte-specific Hmbox1 knockout and AAV9-mediated Hmbox1 knockdown protected against cardiac I/R injury and heart failure. Therapeutic effects were observed when sh-Hmbox1 AAV9 was administered after I/R injury. Inhibition of Hmbox1 activated the Akt/mTOR/P70S6K pathway and transcriptionally upregulated Gck, leading to reduced apoptosis and improved mitochondrial respiration and glycolysis in cardiomyocytes. ETS1 functioned as an upstream negative regulator of Hmbox1 transcription, and its overexpression was protective against cardiac I/R injury. CONCLUSIONS: Our studies unravel a new role for the transcriptional repressor Hmbox1 in exercise-induced physiological cardiac growth. They also highlight the therapeutic potential of targeting Hmbox1 to improve myocardial survival and glucose metabolism after I/R injury.

3.
J Biol Chem ; 299(4): 103059, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36841479

RESUMO

Peroxisome proliferator-activated receptor γ (PPARγ) is a master regulator of adipocyte differentiation, glucolipid metabolism, and inflammation. Thiazolidinediones are PPARγ full agonists with potent insulin-sensitizing effects, whereas their oral usage is restricted because of unwanted side effects, including obesity and cardiovascular risks. Here, via virtual screening, microscale thermophoresis analysis, and molecular confirmation, we demonstrate that diosmin, a natural compound of wide and long-term clinical use, is a selective PPARγ modulator that binds to PPARγ and blocks PPARγ phosphorylation with weak transcriptional activity. Local diosmin administration in subcutaneous fat (inguinal white adipose tissue [iWAT]) improved insulin sensitivity and attenuated obesity via enhancing browning of white fat and energy expenditure. Besides, diosmin ameliorated inflammation in WAT and liver and reduced hepatic steatosis. Of note, we determined that iWAT local administration of diosmin did not exhibit obvious side effects. Taken together, the present study demonstrated that iWAT local delivery of diosmin protected mice from diet-induced insulin resistance, obesity, and fatty liver by blocking PPARγ phosphorylation, without apparent side effects, making it a potential therapeutic agent for the treatment of metabolic diseases.


Assuntos
Tecido Adiposo Marrom , Tecido Adiposo Branco , Diosmina , Fígado Gorduroso , Resistência à Insulina , PPAR gama , Animais , Camundongos , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Dieta Hiperlipídica , Diosmina/farmacologia , Diosmina/metabolismo , Diosmina/uso terapêutico , Fígado Gorduroso/metabolismo , Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , PPAR gama/metabolismo , Tecido Adiposo Marrom/metabolismo
4.
Basic Res Cardiol ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38563985

RESUMO

Exercise improves cardiac function and metabolism. Although long-term exercise leads to circulating and micro-environmental metabolic changes, the effect of exercise on protein post-translational lactylation modifications as well as its functional relevance is unclear. Here, we report that lactate can regulate cardiomyocyte changes by improving protein lactylation levels and elevating intracellular N6-methyladenosine RNA-binding protein YTHDF2. The intrinsic disorder region of YTHDF2 but not the RNA m6A-binding activity is indispensable for its regulatory function in influencing cardiomyocyte cell size changes and oxygen glucose deprivation/re-oxygenation (OGD/R)-stimulated apoptosis via upregulating Ras GTPase-activating protein-binding protein 1 (G3BP1). Downregulation of YTHDF2 is required for exercise-induced physiological cardiac hypertrophy. Moreover, myocardial YTHDF2 inhibition alleviated ischemia/reperfusion-induced acute injury and pathological remodeling. Our results here link lactate and lactylation modifications with RNA m6A reader YTHDF2 and highlight the physiological importance of this innovative post-transcriptional intrinsic regulation mechanism of cardiomyocyte responses to exercise. Decreasing lactylation or inhibiting YTHDF2/G3BP1 might represent a promising therapeutic strategy for cardiac diseases.

5.
J Phys Chem A ; 128(22): 4483-4492, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38785354

RESUMO

To elucidate the mechanism and origins of chemo- and enantioselectivities of the reaction between aliphatic aldehydes and hydrazones catalyzed by triazolium-derived NHC, density functional theory computations have been performed. According to our calculated results, the whole catalytic cycle for the formation of dihydropyridazinones proceeds via the initial nucleophilic addition of NHC to an aliphatic aldehyde, followed by the concerted intramolecular proton transfer and C-Cl bond cleavage. Subsequent deprotonation generates an enolate intermediate. The enolate intermediate then undergoes 1,4-addition to hydrazone to construct a new carbon-carbon bond. The following ring-closure would lead to a six-membered ring intermediate, which, upon the release of NHC, affords the final product dihydropyridazinone. The computation results reveal that intramolecular proton transfer is significantly promoted by the Brønsted acid DIPEA·H+. The carbon-carbon bond formation step could determine not only the chemoselectivity but also the stereoselectivity and lead to the S-isomer product. It was found that the stereoselectivity arises from a combination of weak interactions, including C-H···O, C-H···N, C-H···π, and LP···π. NHC could enhance the nucleophilicity of the aliphatic aldehyde and facilitate further reaction with hydrazone. This work could be beneficial for the development of new catalytic strategies in the future.

6.
Biochem Genet ; 62(2): 1087-1102, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37532836

RESUMO

Actinomycetes are remarkable natural sources of active natural molecules and enzymes of considerable industrial value. Streptomyces mobaraensis is the first microorganism found to produce transglutaminase with broad industrial applications. Although transglutaminase in S. mobaraensis has been well studied over the past three decades, the genome of S. mobaraensis and its secondary metabolic potential were poorly reported. Here, we presented the complete genome of S. mobaraensis DSM40587 obtained from the German Collection of Microorganisms and Cell Cultures GmbH. It contains a linear chromosome of 7,633,041 bp and a circular plasmid of 23,857 bp. The chromosome with an average GC content of 73.49% was predicted to harbour 6683 protein-coding genes, seven rRNA and 69 tRNA genes. Comparative genomic analysis reveals its meaningful genomic characterisation. A comprehensive bioinformatics investigation identifies 35 putative BGCs (biosynthesis gene clusters) involved in synthesising various secondary metabolites. Of these, 13 clusters showed high similarity (> 55%) to known BGCs coding for polyketides, nonribosomal peptides, hopene, RiPP (Ribosomally synthesized and post-translationally modified peptides), and others. Furthermore, these BGCs with over 65% similarity to the known BGCs were analysed in detail. The complete genome of S. mobaraensis DSM40587 reveals its capacity to yield diverse bioactive natural products and provides additional insights into discovering novel secondary metabolites.

7.
J Pharmacol Exp Ther ; 384(1): 52-60, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35609922

RESUMO

Circular RNAs (circRNAs) are covalently closed RNA produced by back-splicing. CircRNAs have been considered as a type of noncoding RNAs for a long time. However, recent studies have shown that circRNAs can be translated into functional proteins. Proteins specifically encoded by circRNAs have been proved to play important roles in cancer pathology. In this review, we introduce the methods commonly used to identify and validate circRNA translation in detail. We also describe the major mechanisms driving the translation of these circRNAs. In addition, we summarize the main functions of the circRNA-encoded proteins in both physiologic and pathologic conditions. Finally, we discuss the therapeutic potential and challenges in the usage of synthetic translatable circRNAs. This brief review highlights recent discoveries made in this field and the progress of therapy based on translatable circRNAs. SIGNIFICANCE STATEMENT: Understanding the translation of circRNA could facilitate the identification of novel drug targets in various diseases. Moreover, some circRNA encoded proteins were demonstrated to have therapeutic functions in cancer. The application of synthetic circRNAs as carriers to achieve stable protein expression in vitro and in vivo has tremendous therapeutic potential.


Assuntos
Neoplasias , RNA Circular , Humanos , RNA Circular/genética , RNA Circular/metabolismo , RNA/genética , Splicing de RNA , Neoplasias/genética
8.
Mol Pharm ; 20(1): 57-81, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36413809

RESUMO

With permanent heart muscle injury or death, myocardial infarction (MI) is complicated by inflammatory, proliferation and remodeling phases from both the early ischemic period and subsequent infarct expansion. Though in situ re-establishment of blood flow to the infarct zone and delays of the ventricular remodeling process are current treatment options of MI, they fail to address massive loss of viable cardiomyocytes while transplanting stem cells to regenerate heart is hindered by their poor retention in the infarct bed. Equipped with heart-specific mimicry and extracellular matrix (ECM)-like functionality on the network structure, hydrogels leveraging tissue-matching biomechanics and biocompatibility can mechanically constrain the infarct and act as localized transport of bioactive ingredients to refresh the dysfunctional heart under the constant cyclic stress. Given diverse characteristics of hydrogel including conductivity, anisotropy, adhesiveness, biodegradability, self-healing and mechanical properties driving local cardiac repair, we aim to investigate and conclude the dynamic balance between ordered architectures of hydrogels and the post-MI pathological milieu. Additionally, our review summarizes advantages of heart-tailored architectures of hydrogels in cardiac repair following MI. Finally, we propose challenges and prospects in clinical translation of hydrogels to draw theoretical guidance on cardiac repair and regeneration after MI.


Assuntos
Hidrogéis , Infarto do Miocárdio , Humanos , Hidrogéis/química , Infarto do Miocárdio/terapia , Miócitos Cardíacos , Remodelação Ventricular , Matriz Extracelular/patologia , Miocárdio
9.
Circ Res ; 128(1): e1-e23, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33092465

RESUMO

RATIONALE: Previous translational studies implicate plasma extracellular microRNA-30d (miR-30d) as a biomarker in left ventricular remodeling and clinical outcome in heart failure (HF) patients, although precise mechanisms remain obscure. OBJECTIVE: To investigate the mechanism of miR-30d-mediated cardioprotection in HF. METHODS AND RESULTS: In rat and mouse models of ischemic HF, we show that miR-30d gain of function (genetic, lentivirus, or agomiR-mediated) improves cardiac function, decreases myocardial fibrosis, and attenuates cardiomyocyte (CM) apoptosis. Genetic or locked nucleic acid-based knock-down of miR-30d expression potentiates pathological left ventricular remodeling, with increased dysfunction, fibrosis, and cardiomyocyte death. RNA sequencing of in vitro miR-30d gain and loss of function, together with bioinformatic prediction and experimental validation in cardiac myocytes and fibroblasts, were used to identify and validate direct targets of miR-30d. miR-30d expression is selectively enriched in cardiomyocytes, induced by hypoxic stress and is acutely protective, targeting MAP4K4 (mitogen-associate protein kinase 4) to ameliorate apoptosis. Moreover, miR-30d is secreted primarily in extracellular vesicles by cardiomyocytes and inhibits fibroblast proliferation and activation by directly targeting integrin α5 in the acute phase via paracrine signaling to cardiac fibroblasts. In the chronic phase of ischemic remodeling, lower expression of miR-30d in the heart and plasma extracellular vesicles is associated with adverse remodeling in rodent models and human subjects and is linked to whole-blood expression of genes implicated in fibrosis and inflammation, consistent with observations in model systems. CONCLUSIONS: These findings provide the mechanistic underpinning for the cardioprotective association of miR-30d in human HF. More broadly, our findings support an emerging paradigm involving intercellular communication of extracellular vesicle-contained miRNAs (microRNAs) to transregulate distinct signaling pathways across cell types. Functionally validated RNA biomarkers and their signaling networks may warrant further investigation as novel therapeutic targets in HF.


Assuntos
MicroRNAs/metabolismo , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Comunicação Parácrina , Função Ventricular Esquerda , Remodelação Ventricular , Animais , Apoptose , Células Cultivadas , Modelos Animais de Doenças , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose , Regulação da Expressão Gênica , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , MicroRNAs/genética , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Ratos Sprague-Dawley , Ratos Transgênicos , Transdução de Sinais , Quinase Induzida por NF-kappaB
10.
Mol Ther ; 30(1): 400-414, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34274534

RESUMO

Exercise training benefits the heart. The knowledge of post-transcription regulation, especially RNA editing, in hearts remain rare. ADAR2 is an enzyme that edits adenosine to inosine nucleotides in double-stranded RNA, and RNA editing is associated with many human diseases. We found that ADAR2 was upregulated in hearts during exercise training. AAV9-mediated cardiac-specific ADAR2 overexpression attenuated acute myocardial infarction (AMI), MI remodeling, and doxorubicin (DOX)-induced cardiotoxicity. In vitro, overexpression of ADAR2 inhibited DOX-induced cardiomyocyte (CM) apoptosis. but it could also induce neonatal rat CM proliferation. Mechanistically, ADAR2 could regulate the abundance of mature miR-34a in CMs. Regulations of miR-34a or its target genes (Sirt1, Cyclin D1, and Bcl2) could affect the pro-proliferation and anti-apoptosis effects of ADAR2 on CMs. These data demonstrated that exercise-induced ADAR2 protects the heart from MI and DOX-induced cardiotoxicity. Our work suggests that ADAR2 overexpression or a post-transcriptional associated RNA editing via ADAR2 may be a promising therapeutic strategy for heart diseases.


Assuntos
MicroRNAs , Infarto do Miocárdio , Animais , Apoptose/genética , Cardiotoxicidade/genética , Cardiotoxicidade/prevenção & controle , Doxorrubicina/efeitos adversos , MicroRNAs/genética , Infarto do Miocárdio/genética , Miócitos Cardíacos , Ratos
11.
Mol Ther ; 30(4): 1675-1691, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35077859

RESUMO

Exercise and its regulated molecules have myocardial protective effects against cardiac ischemia/reperfusion (I/R) injury. The muscle-enriched miR-486 was previously identified to be upregulated in the exercised heart, which prompted us to investigate the functional roles of miR-486 in cardiac I/R injury and to further explore its potential in contributing to exercise-induced protection against I/R injury. Our data showed that miR-486 was significantly downregulated in the heart upon cardiac I/R injury. Both preventive and therapeutic interventions of adeno-associated virus 9 (AAV9)-mediated miR-486 overexpression could reduce cardiac I/R injury. Using AAV9 expressing miR-486 with a cTnT promoter, we further demonstrated that cardiac muscle cell-targeted miR-486 overexpression was also sufficient to protect against cardiac I/R injury. Consistently, miR-486 was downregulated in oxygen-glucose deprivation/reperfusion (OGDR)-stressed cardiomyocytes, while upregulating miR-486 inhibited cardiomyocyte apoptosis through PTEN and FoxO1 inhibition and AKT/mTOR activation. Finally, we observed that miR-486 was necessary for exercise-induced protection against cardiac I/R injury. In conclusion, miR-486 is protective against cardiac I/R injury and myocardial apoptosis through targeting of PTEN and FoxO1 and activation of the AKT/mTOR pathway, and mediates the beneficial effect of exercise for myocardial protection. Increasing miR-486 might be a promising therapeutic strategy for myocardial protection.


Assuntos
MicroRNAs , Traumatismo por Reperfusão Miocárdica , Apoptose/genética , Humanos , Isquemia/metabolismo , MicroRNAs/metabolismo , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
12.
Curr Genomics ; 24(2): 66-71, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37994328

RESUMO

Circular RNAs (circRNAs) are a class of endogenous functional RNA generated by back-splicing. Recently, circRNAs have been found to have certain coding potential. Proteins/peptides translated from circRNAs play essential roles in various diseases. Here, we briefly summarize the basic knowledge and technologies that are usually applied to study circRNA translation. Then, we focus on the research progress of circRNA translation in cardiovascular diseases and discuss the perspective and future direction of translatable circRNA study in cardiovascular diseases.

13.
Adv Exp Med Biol ; 1418: 3-14, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37603269

RESUMO

Extracellular vesicles (EVs) are considered as cargo and mediate intercellular communication. As natural biological nanoparticles, EVs can be secreted by almost all kinds of cells and exist in biofluids such as milk, urine, blood, etc. In the past decades, several methods have been utilized to isolate EVs from cell culture medium, biofluids, and tissues. Here in this chapter, we summarized conventional and novel methods and fundamental procedures of EVs extraction and purification from different biofluids (plasma, urine, milk, and saliva) and tissues (brain, intestinal tissue, muscles, and heart). The present section also discusses how to choose appropriate methods to extract EVs from tissues based on downstream analysis. This chapter will expand the horizons of EVs isolation and purification from different mediums.


Assuntos
Líquidos Corporais , Vesículas Extracelulares , Animais , Leite , Transporte Biológico , Encéfalo
14.
Adv Exp Med Biol ; 1396: 157-176, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36454466

RESUMO

Muscle atrophy is a multifactor syndrome, which not only decreases the patients' quality of life significantly but also increases the morbidity and mortality of patients with chronic diseases. At present, no effective clinical treatments for muscle atrophy except for exercise are available. The emerging field of genome editing is gaining momentum as it has shown great advantage in the treatment of various diseases, including muscle atrophy. In our current review, we systematically evaluate the etiology and related signaling pathways of muscle atrophy and discuss the application of genome editing in the treatment of muscle atrophy.


Assuntos
Edição de Genes , Qualidade de Vida , Humanos , Atrofia Muscular/genética , Atrofia Muscular/terapia , Exercício Físico , Movimento (Física)
15.
Sensors (Basel) ; 23(18)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37766005

RESUMO

With the increasing demand for person re-identification (Re-ID) tasks, the need for all-day retrieval has become an inevitable trend. Nevertheless, single-modal Re-ID is no longer sufficient to meet this requirement, making Multi-Modal Data crucial in Re-ID. Consequently, a Visible-Infrared Person Re-Identification (VI Re-ID) task is proposed, which aims to match pairs of person images from the visible and infrared modalities. The significant modality discrepancy between the modalities poses a major challenge. Existing VI Re-ID methods focus on cross-modal feature learning and modal transformation to alleviate the discrepancy but overlook the impact of person contour information. Contours exhibit modality invariance, which is vital for learning effective identity representations and cross-modal matching. In addition, due to the low intra-modal diversity in the visible modality, it is difficult to distinguish the boundaries between some hard samples. To address these issues, we propose the Graph Sampling-based Multi-stream Enhancement Network (GSMEN). Firstly, the Contour Expansion Module (CEM) incorporates the contour information of a person into the original samples, further reducing the modality discrepancy and leading to improved matching stability between image pairs of different modalities. Additionally, to better distinguish cross-modal hard sample pairs during the training process, an innovative Cross-modality Graph Sampler (CGS) is designed for sample selection before training. The CGS calculates the feature distance between samples from different modalities and groups similar samples into the same batch during the training process, effectively exploring the boundary relationships between hard classes in the cross-modal setting. Some experiments conducted on the SYSU-MM01 and RegDB datasets demonstrate the superiority of our proposed method. Specifically, in the VIS→IR task, the experimental results on the RegDB dataset achieve 93.69% for Rank-1 and 92.56% for mAP.

16.
J Mol Cell Cardiol ; 164: 126-135, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34914934

RESUMO

The benefits of exercise in humans on the heart have been well recognized for many years. Long-term endurance exercise training can induce physiologic cardiac hypertrophy with normal or enhanced heart function, and provide protective benefits in preventing heart failure. The heart-specific responses that occur during exercise are complex and highly variable. This review mainly focuses on the current understanding of the structural and functional cardiac adaptations to exercise as well as molecular pathways and signaling proteins responsible for these changes. Here, we summarize eight tentative hallmarks that represent common denominators of the exercised heart. These hallmarks are: cardiomyocyte growth, cardiomyocyte fate reprogramming, angiogenesis and lymphangiogenesis, mitochondrial remodeling, epigenetic alteration, enhanced endothelial function, quiescent cardiac fibroblast, and improved cardiac metabolism. A major challenge is to explore the underlying molecular mechanisms for cardio-protective effects of exercise, and to identify therapeutic targets for heart diseases.


Assuntos
Cardiomegalia , Insuficiência Cardíaca , Cardiomegalia/metabolismo , Fenômenos Fisiológicos Cardiovasculares , Exercício Físico/fisiologia , Coração , Humanos , Miócitos Cardíacos/metabolismo
17.
Circulation ; 144(4): 303-317, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34015936

RESUMO

BACKGROUND: The benefits of exercise training in the cardiovascular system have been well accepted; however, the underlying mechanism remains to be explored. Here, we report the initial functional characterization of an exercise-induced cardiac physiological hypertrophy-associated novel long noncoding RNA (lncRNA). METHODS: Using lncRNA microarray profiling, we identified lncRNAs in contributing the modulation of exercise-induced cardiac growth that we termed cardiac physiological hypertrophy-associated regulator (CPhar). Mice with adeno-associated virus serotype 9 driving CPhar overexpression and knockdown were used in in vivo experiments. Swim training was used to induce physiological cardiac hypertrophy in mice, and ischemia reperfusion injury surgery was conducted to investigate the protective effects of CPhar in mice. To investigate the mechanisms of CPhar's function, we performed various analyses including quantitative reverse transcription polymerase chain reaction, Western blot, histology, cardiac function (by echocardiography), functional rescue experiments, mass spectrometry, in vitro RNA transcription, RNA pulldown, RNA immunoprecipitation, chromatin immunoprecipitation assay, luciferase reporter assay, and coimmunoprecipitation assays. RESULTS: We screened the lncRNAs in contributing the modulation of exercise-induced cardiac growth through lncRNA microarray profiling and found that CPhar was increased with exercise and was necessary for exercise-induced physiological cardiac growth. The gain and loss of function of CPhar regulated the expression of proliferation markers, hypertrophy, and apoptosis in cultured neonatal mouse cardiomyocytes. Overexpression of CPhar prevented myocardial ischemia reperfusion injury and cardiac dysfunction in vivo. We identified DDX17 (DEAD-Box Helicase 17) as a binding partner of CPhar in regulating CPhar downstream factor ATF7 (activating transcription factor 7) by sequestering C/EBPß (CCAAT/enhancer binding protein beta). CONCLUSIONS: Our study of this lncRNA CPhar provides new insights into the regulation of exercise-induced cardiac physiological growth, demonstrating the cardioprotective role of CPhar in the heart, and expanding our mechanistic understanding of lncRNA function, as well.


Assuntos
Biomarcadores , Cardiomegalia/etiologia , Treino Aeróbico/efeitos adversos , Traumatismo por Reperfusão Miocárdica/etiologia , Miócitos Cardíacos/metabolismo , RNA Longo não Codificante/genética , Recuperação de Função Fisiológica/genética , Fatores Ativadores da Transcrição/genética , Fatores Ativadores da Transcrição/metabolismo , Animais , Apoptose , Proteína beta Intensificadora de Ligação a CCAAT/genética , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Cardiomegalia/diagnóstico , Modelos Animais de Doenças , Ecocardiografia , Perfilação da Expressão Gênica , Camundongos , Traumatismo por Reperfusão Miocárdica/diagnóstico , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/fisiopatologia
18.
Circulation ; 144(2): 159-169, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-33876947

RESUMO

While we continue to wrestle with the immense challenge of implementing equitable access to established evidence-based treatments, substantial gaps remain in our pharmacotherapy armament for common forms of cardiovascular disease including coronary and peripheral arterial disease, heart failure, hypertension, and arrhythmia. We need to continue to invest in the development of new approaches for the discovery, rigorous assessment, and implementation of new therapies. Currently, the time and cost to progress from lead compound/product identification to the clinic, and the success rate in getting there reduces the incentive for industry to invest, despite the enormous burden of disease and potential size of market. There are tremendous opportunities with improved phenotyping of patients currently batched together in syndromic "buckets." Use of advanced imaging and molecular markers may allow stratification of patients in a manner more aligned to biological mechanisms that can, in turn, be targeted by specific approaches developed using high-throughput molecular technologies. Unbiased "omic" approaches enhance the possibility of discovering completely new mechanisms in such groups. Furthermore, advances in drug discovery platforms, and models to study efficacy and toxicity more relevant to the human disease, are valuable. Re-imagining the relationships among discovery, translation, evaluation, and implementation will help reverse the trend away from investment in the cardiovascular space, establishing innovative platforms and approaches across the full spectrum of therapeutic development.


Assuntos
Doenças Cardiovasculares/tratamento farmacológico , Descoberta de Drogas/métodos , Humanos
19.
Front Neuroendocrinol ; 63: 100939, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34411573

RESUMO

We aimed to assess the sex-inclusive and sex-based analysis bias in alcohol research for the past 20 years. Data were abstracted from 2988 original research articles published from 2000 through 2019 in 51 representative journals across 9 biomedical disciplines. An analysis in 5-year intervals revealed that the percentage of studies using participants of both sexes was significantly higher between 2015 and 2019 than between 2000 and 2014. When stratified, clinical studies showed a higher percentage of both-sex studies compared to basic studies using animals. The reasons for the use of single-sex cohorts mainly included insufficient participant numbers and misconceptions surrounding the hormonal variability of females. Implementation of the NIH SABV policy promoted the ratio of NIH-funded papers with sex-based analyses. In conclusion, sex bias in alcohol-related biomedical studies has improved over the past 20 years, particularly after the implementation of the SABV policy. Although clinical studies increasingly included sex-based analysis, basic studies were biased towards the use of males.


Assuntos
Pesquisa Biomédica , Sexismo , Animais , Feminino , Humanos , Masculino , Fatores Sexuais
20.
Mol Ther ; 29(3): 1102-1119, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33279721

RESUMO

Muscle atrophy is associated with negative outcomes in a variety of diseases. Identification of a common therapeutic target would address a significant unmet clinical need. Here, we identify a long non-coding RNA (lncRNA) (muscle-atrophy-associated transcript, lncMAAT) as a common regulator of skeletal muscle atrophy. lncMAAT is downregulated in multiple types of muscle-atrophy models both in vivo (denervation, Angiotensin II [AngII], fasting, immobilization, and aging-induced muscle atrophy) and in vitro (AngII, H2O2, and tumor necrosis factor alpha [TNF-α]-induced muscle atrophy). Gain- and loss-of-function analysis both in vitro and in vivo reveals that downregulation of lncMAAT is sufficient to induce muscle atrophy, while overexpression of lncMAAT can ameliorate multiple types of muscle atrophy. Mechanistically, lncMAAT negatively regulates the transcription of miR-29b through SOX6 by a trans-regulatory module and increases the expression of the neighboring gene Mbnl1 by a cis-regulatory module. Therefore, overexpression of lncMAAT may represent a promising therapy for muscle atrophy induced by different stimuli.


Assuntos
MicroRNAs/genética , Atrofia Muscular/terapia , RNA Longo não Codificante/antagonistas & inibidores , Sequências Reguladoras de Ácido Nucleico , Fatores de Transcrição SOXD/metabolismo , Animais , Diferenciação Celular , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular/genética , Mioblastos/metabolismo , Mioblastos/patologia , RNA Longo não Codificante/genética , Fatores de Transcrição SOXD/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA