Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
J Am Chem Soc ; 145(25): 13592-13602, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37312411

RESUMO

Charge compensation from cationic and anionic redox couples accompanying Na+ (de)intercalation in layered oxide cathodes contributes to high specific capacity. However, the engagement level of different redox couples remains unclear and their relationship with Na+ content is less studied. Here we discover that it is possible to take full advantage of the high-voltage transition metal (TM) redox reaction through low-valence cation substitution to tailor the electronic structure, which involves an increased ratio of Na+ content to available charge transfer number of TMs. Taking NaxCu0.11Ni0.11Fe0.3Mn0.48O2 as the example, the Li+ substitution increases the ratio to facilitate the high-voltage TM redox activity, and further F-ion substitution decreases the covalency of the TM-O bond to relieve structural changes. As a consequence, the final high-entropy Na0.95Li0.07Cu0.11Ni0.11Fe0.3Mn0.41O1.97F0.03 cathode demonstrates ∼29% capacity increase contributed by the high-voltage TMs and exhibits excellent long-term cycling stability due to the improved structural reversibility. This work provides a paradigm for the design of high-energy-density electrodes by simultaneous electronic and crystal structure modulation.

2.
J Am Chem Soc ; 145(19): 10576-10583, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37130260

RESUMO

Li and Na metals with high energy density are promising in application in rechargeable batteries but suffer from degradation in the ambient atmosphere. The phenomenon that in terms of kinetics, Li is stable but Na is unstable in dry air has not been fully understood. Here, we use in situ environmental transmission electron microscopy combined with theoretical simulations and reveal that the different stabilities in dry air for Li and Na are reflected by the formation of compact Li2O layers on Li metal, while porous and rough Na2O/Na2O2 layers on Na metal are a consequence of the different thermodynamic and kinetics in O2. It is shown that a preformed carbonate layer can change the kinetics of Na toward an anticorrosive behavior. Our study provides a deeper understanding of the often-overlooked chemical reactions with environmental gases and enhances the electrochemical performance of Li and Na by controlling interfacial stability.

3.
J Am Chem Soc ; 144(25): 11338-11347, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35700279

RESUMO

Single-crystalline Ni-rich cathodes with high capacity have drawn much attention for mitigating cycling and safety crisis of their polycrystalline analogues. However, planar gliding and intragranular cracking tend to occur in single crystals with cycling, which undermine cathode integrity and therefore cause capacity degradation. Herein, we intensively investigate the origin and evolution of the gliding phenomenon in single-crystalline Ni-rich cathodes. Discrete or continuous gliding forms are revealed with new surface exposure including the gliding plane (003) and reconstructed (-108) under surface energy drive. It is also demonstrated that the gliding process is the in-plane migration of transition metal ions, and reducing oxygen vacancies will increase the migration energy barrier by which gliding and microcracking can be restrained. The designed cathode with less oxygen deficiency exhibits outstanding cycling performance with an 80.8% capacity retention after 1000 cycles in pouch cells. Our findings provide an insight into the relationship between defect control and chemomechanical properties of single-crystalline Ni-rich cathodes.

4.
Langmuir ; 37(17): 5252-5259, 2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-33874720

RESUMO

The interfacial stability between the cathode and electrolyte is an essential issue in the development of high-energy-density and long-life lithium-ion batteries. The deterioration of capacity dominated by Mn dissolution makes LiMn2O4 a representative case for studying the evolution of interfaces. Here, we use the ab initio molecular dynamics (AIMD) method to simulate the interface reaction between the ethylene carbonate (EC) molecules and the (110) surface of completely delithiated LiMn2O4 where most severe Mn dissolution is observed in the experiment. It is found that the intrinsic oxygen loss on the surface will drive the initial migration of surface Mn atoms to the electrolyte while reducing them. The EC molecules will decompose after transferring electrons to the surface Mn atoms, and its decomposition products further promote the Mn dissolution. In addition, oxygen loss and EC decomposition are in a competitive relationship when transferring electrons to the surface Mn atoms. This work provides a complete picture of the step-by-step dissolution of Mn atoms along with the interfacial evolution in the spinel LiMn2O4 system and also provides a scope for the study of transition-metal dissolution in other cathode materials and electrolytes.

5.
Inorg Chem ; 58(21): 14389-14402, 2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31625736

RESUMO

Cation ordering/disordering in spinel oxides plays an essential role in the rich physical and chemical properties which are hallmarks of the structural archetype. A variety of cation-ordering motifs have been reported for spinel oxides with multiple cations residing on the octahedral site (or B-site). This has attracted tremendous attention from both experimental and theoretical communities in the last few decades. However, no unified view has been reached, presumably due to the richness of cation species and corresponding complex arrangements emergent in this large family of compounds. In this report, local cation-ordered ground states of (inverse) spinel oxides with two different cations on the octahedral site have been thoroughly investigated using neutron and X-ray total scattering, and a comprehensive theory has been proposed to explain the commonly observed cation-ordered polymorphs. It is found that a cation-zigzag-ordered structure (space group P4122) is the ground state for inverse spinel oxides with a pure or strong ionic lattice, while a cation-linear-ordered arrangement (space group Imma) emerges when one of the B-site cations forms very strong directional covalent bonds with lattice oxygen. The degree and length scale of cation ordering is strongly correlated with the charge and ionic radius difference between the two octahedral site cations. More complicated cation ordering schemes can be formed when there is a concomitant charge and orbital ordering which fall on a similar energy scale. This can lead to the formation of orbital-driven cation clusters or the broad concept of "molecules" in solid- state compounds. It is expected these findings will help to better understand the observed physical properties of spinel oxides and thus facilitate design strategies for improved functional materials.

6.
J Am Chem Soc ; 140(26): 8147-8155, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29883104

RESUMO

Lithium-sulfur batteries possess favorable potential for energy-storage applications because of their high specific capacity and the low cost of sulfur. Intensive understanding of the interfacial mechanism, especially the polysulfide formation and transformation under complex electrochemical environment, is crucial for the buildup of advanced batteries. Here, we report the direct visualization of interfacial evolution and dynamic transformation of the sulfides mediated by the lithium salts via real-time atomic force microscopy monitoring inside a working battery. The observations indicate that the lithium salts influence the structures and processes of sulfide deposition/decomposition during discharge/charge. Moreover, the distinct ion interaction and the diffusion in electrolytes manipulate the interfacial reactions determining the kinetics of the sulfide transformation. Our findings provide deep insights into surface dynamics of lithium-sulfur reactions revealing the salt-mediated mechanisms at nanoscale, which contribute to the profound understanding of the interfacial processes for the optimized design of lithium-sulfur batteries.

7.
J Am Chem Soc ; 140(45): 15279-15289, 2018 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-30347983

RESUMO

Cathodes of lithium-rich layered oxides for high-energy Li-ion batteries in electrically powered vehicles are attracting considerable attention by the research community. However, current research is insufficient to account for their complex reaction mechanism and application. Here, the structural evolution of lithium-manganese-rich layered oxides at different temperatures during electrochemical cycling has been investigated thoroughly, and their structural stability has been designed. The results indicated structure conversion from the two structures into a core-shell structure with a single distorted-monoclinic LiTMO2 structure core and disordered-spinel/rock salt structure shell, along with lattice oxygen extraction and lattice densification, transition- metal migration, and aggregation on the crystal surface. The structural conversion behavior was found to be seriously temperature sensitive, accelerated with higher temperature, and can be effectively adjusted by structural design. This study clarifies the structural evolution mechanism of these lithium-rich layered oxides and opens the door to the design of similar high-energy materials with better cycle stability.

8.
J Am Chem Soc ; 139(12): 4274-4277, 2017 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-28274118

RESUMO

We report a method for in situ atomic-scale observation of electrochemical delithiation in a working all-solid-state battery using a state-of-the-art chip based in situ transmission electron microscopy (TEM) holder and focused ion beam milling to prepare an all-solid-state lithium-ion battery sample. A battery consisting of LiCoO2 cathode, LLZO solid state electrolyte and gold anode was constructed, delithiated and observed in an aberration corrected scanning transmission electron microscope at atomic scale. We found that the pristine single crystal LiCoO2 became nanosized polycrystal connected by coherent twin boundaries and antiphase domain boundaries after high voltage delithiation. This is different from liquid electrolyte batteries, where a series of phase transitions take place at LiCoO2 cathode during delithiation. Both grain boundaries become more energy favorable along with extraction of lithium ions through theoretical calculation. We also proposed a lithium migration pathway before and after polycrystallization. This new methodology could stimulate atomic scale in situ scanning/TEM studies of battery materials and provide important mechanistic insight for designing better all-solid-state battery.

9.
Phys Rev Lett ; 118(19): 195901, 2017 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-28548520

RESUMO

Through first-principles calculations and crystal structure prediction techniques, we identify a new layered oxysulfide LiAlSO in orthorhombic structure as a novel lithium superionic conductor. Two kinds of stacking sequences of layers of AlS_{2}O_{2} are found in different temperature ranges. Phonon and molecular dynamics simulations verify their dynamic stabilities, and wide band gaps up to 5.6 eV are found by electronic structure calculations. The lithium migration energy barrier simulations reveal the collective interstitial-host ion "kick-off" hopping mode with barriers lower than 50 meV as the dominating conduction mechanism for LiAlSO, indicating it to be a promising solid-state electrolyte in lithium secondary batteries with fast ionic conductivity and a wide electrochemical window. This is a first attempt in which the lithium superionic conductors are designed by the crystal structure prediction method and may help explore other mixed-anion battery materials.

10.
Phys Chem Chem Phys ; 19(27): 17538-17543, 2017 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-28671195

RESUMO

Due to its better physical and electrochemical properties, Li2MoO3 was proposed to replace Li2MnO3 for constructing new Li-rich cathode materials. However, the molybdenum (Mo)-ion shuttling between the Li layer and the Mo layer upon electrochemical Li-extraction raises concerns on the structural stability of the Mo-based Li-rich materials. In this article, the nudged energy band method was applied using first-principles calculations to understand the reason for the Mo-ion migration and to sieve substituent elements for Mo from a number of transition metals. Molecular dynamics calculations were performed to simulate the kinetic properties of the pristine and transition metal substituted Li2MoO3. On the basis of these calculations, antimony (Sb) was proposed as a substituent to enhance the structural stability of Li2MoO3 and improve its rate performance.

11.
Phys Chem Chem Phys ; 19(46): 31436-31442, 2017 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-29159343

RESUMO

Density functional theory simulations and experimental studies were performed to investigate the interfacial properties, including lithium ion migration kinetics, between lithium metal anode and solid electrolyte Li10GeP2S12(LGPS). The LGPS[001] plane was chosen as the studied surface because the easiest Li+ migration pathway is along this direction. The electronic structure of the surface states indicated that the electrochemical stability was reduced at both the PS4- and GeS4-teminated surfaces. For the interface cases, the equilibrium interfacial structures of lithium metal against the PS4-terminated LGPS[001] surface (Li/PS4-LGPS) and the GeS4-terminated LGPS[001] surface (Li/GeS4-LGPS) were revealed based on the structural relaxation and adhesion energy analysis. Solid electrolyte interphases were expected to be formed at both Li/PS4-LGPS and Li/GeS4-LGPS interfaces, resulting in an unstable state of interface and large interfacial resistance, which was verified by the EIS results of the Li/LGPS/Li cell. In addition, the simulations of the migration kinetics show that the energy barriers for Li+ crossing the Li/GeS4-LGPS interface were relatively low compared with the Li/PS4-LGPS interface. This may contribute to the formation of Ge-rich phases at the Li/LGPS interface, which can tune the interfacial structures to improve the ionic conductivity for future all-solid-state batteries. This work will offer a thorough understanding of the Li/LGPS interface, including local structures, electronic states and Li+ diffusion behaviors in all-solid-state batteries.

12.
Phys Chem Chem Phys ; 18(31): 21269-77, 2016 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-27432279

RESUMO

Solid state electrolytes with high Li ion conduction are vital to the development of all-solid-state lithium batteries. Lithium thiophosphate Li3PS4 is the parent material of a series of Li superionic conductors Li10MX2S12 (M = Ge, Sn,…; X = P, Si,…), and ß-Li3PS4 shows relatively high ionic conductivity itself, though it is not room-temperature stable. The positive effects of introducing O dopants into ß-Li3PS4 to stabilize the crystal phase and improve the ionic conducting behaviour are revealed in this study. With the aid of first-principles density functional theory (DFT) computations and quasi-empirical bond-valence calculations, the effects of O doping at different concentrations on the properties of ß-Li3PS4 is thoroughly investigated from the aspects of lattice structures, electronic structures, ionic transport properties, the interface stability against Li and the thermodynamic stability. An oxygen-driven transition from two-dimensional to three-dimensional transport behaviour is found and the oxygen dopants play the role as a connector of 2D paths. Based on all these simulation results, hopefully our research can provide a new strategy for the modification of lithium thiophosphate solid electrolytes.

13.
J Phys Chem Lett ; 15(7): 1879-1886, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38345013

RESUMO

Lithium-rich antiperovskites (LiRAPs) have garnered recent attention as solid electrolytes for solid-state lithium-ion batteries (SSLIBs) with high safety and high energy density. Among them, the layered antiperovskite Li7O2Br3 exhibits superior Li+ conductivity compared to cubic antiperovskite Li3OBr. However, the pure phase of Li7O2Br3 has not been synthesized to date, impeding an in-depth investigation of its migration mechanism and electrochemical properties. Herein, we employ density functional theory (DFT) calculations to examine the physical and electrochemical properties of Li7O2Br3. Our results reveal that Li7O2Br3 is dynamically stable in its ground state, featuring electrical insulation with a wide bandgap of approximately 5.83 eV. Moreover, Li7O2Br3 exhibits improved malleability compared to Li3OBr, making it favorable for material processing. Notably, the calculated energy barrier for Li+ migration in Li7O2Br3 is 0.26 eV, lower than that in Li3OBr (0.4 eV), primarily attributed to the softened phonons of Li at the edge layers within the Li7O2Br3 lattice. We also investigated the impact of various defect types on Li+ diffusion in Li7O2Br3, with the results indicating that LiBr defects effectively facilitate Li+ mobility. Additionally, we constructed a pressure-temperature-Gibbs (PTG) free energy phase diagram for Li7O2Br3 to explore appropriate experimental synthesis conditions. These findings hold substantial promise for promoting the research and development of innovative solid electrolyte materials for advanced SSLIBs.

14.
ACS Appl Mater Interfaces ; 15(17): 21086-21096, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37088948

RESUMO

Due to the excellent ionic conductivity and compatibility with high-voltage cathodes, halide-based superionic conductors as promising electrolytes have received widespread attention. A series of halide-based conductors, including Na3YCl6, are investigated aiming to find new solid electrolytes for sodium-ion batteries. However, Na3YCl6 with high ionic conductivity is meta-stable in thermostability while the stable phase exhibits poor ionic transport properties. In this work, we find that the coplanar formed anionic group (Y2Cl9)3- is the result of a combination of the structural features of the fast ion phase and stable phase of Na3YCl6 by systematic analysis of crystal structures. Aiming to find fast sodium-ion conductors, the three-step structure construction method using functional (Y2Cl9)3- groups as building blocks is proposed, and three new crystal structures in the composition of Na3Y2Cl9 with the space group of P63, Cc, and R32 are obtained. Na+ transport properties, thermostability, and electrochemical window of these structures with various symmetries are investigated by first-principles calculation methods. The results show that the principle to inverse design crystal structures of halides by basic blocks, e.g., anion groups and mobile cations, is proven to be effective and successful. For P63-Na3Y2Cl9 with outstanding transport properties, the simulation results indicate that its superionic behavior is attributed to the coherent diffusion connecting two directions. The synchronization of the migration pathways along the ab plane and the migration pathways along the c direction promotes the Na ion conductivity in Na3Y2Cl9. Our research will promote the understanding of the transport mechanism in halide-based electrolytes, and the structure construction method based on functional basic building blocks and special stacking modes will accelerate the inverse design of inorganic crystal structures.

15.
ACS Appl Mater Interfaces ; 14(8): 10353-10362, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35179368

RESUMO

Mn dissolution is one of the most important factors for the failure of LiMn2O4 batteries. Doping has been widely adopted in the modification of LiMn2O4 cathodes; however, there is still a lack of theoretical guidance on screening the dopants. Here, through first-principles calculations, we systematically investigated the effects of all 3, 4d transition metals as well as Mg, Ca, Sr, Al, Ga, and In on the surface oxygen stability of LiMn2O4 cathodes, which has been proved to be correlated with the stability of the surface Mn atoms. Six competitive dopants, namely Nb, Ru, Mo, V, Tc, and Ti, were screened out. Besides, for three dopants in low valence states (Mg, Cu, and Zn), their Li-site doping can more effectively stabilize the surface oxygen atoms compared with Mn-site doping. Finally, we synthesized LiMn2O4 samples with Mg, Mo, and Nb surface doping to validate the rationality of the computational results. We found that particle morphology should also be considered in addition to surface oxygen stability for controlling Mn dissolution. Moreover, the electrochemical performance of LiMn2O4 batteries is a more complex issue and cannot be solely regulated by Mn dissolution. During the experiments, we have explored novel efficient binary chromogenic reagents for ultraviolet-visible spectroscopy analysis that can be used for rapid and low-cost Mn dissolution detection. This work provides a paradigm for the systematic design of the surface modification of the LiMn2O4 cathode under theoretical guidance.

16.
Nat Commun ; 13(1): 5810, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36192395

RESUMO

The operation of lithium-ion batteries involves electron removal from and filling into the redox orbitals of cathode materials, experimentally probing the orbital electron population thus is highly desirable to resolve the redox processes and charge compensation mechanism. Here, we combine quantitative convergent-beam electron diffraction with high-energy synchrotron powder X-ray diffraction to quantify the orbital populations of Co and O in the archetypal cathode material LiCoO2. The results indicate that removing Li ions from LiCoO2 decreases Co t2g orbital population, and the intensified covalency of Co-O bond upon delithiation enables charge transfer from O 2p orbital to Co eg orbital, leading to increased Co eg orbital population and oxygen oxidation. Theoretical calculations verify these experimental findings, which not only provide an intuitive picture of the redox reaction process in real space, but also offer a guidance for designing high-capacity electrodes by mediating the covalency of the TM-O interactions.

17.
ACS Appl Mater Interfaces ; 13(32): 38384-38393, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34351129

RESUMO

The reactivity of garnet solid electrolytes toward humid air hinders their practical application despite their attractive, superior properties such as high Li+ conductivity and wide electrochemical window. Sealing garnets with organic solvents can not only prevent them from reacting with humid air but also render them compatible with other processing technologies. Therefore, the chemical and structural stability of garnets in organic solvents must be studied. In this study, we selected several commonly used organic solvents with different representative functional groups to investigate their stability with garnets and reaction mechanisms. The experiments and theoretical calculations revealed that all of the solvents reacted with garnets through Li-H exchange, and solvent acidity determined the reaction strength. Furthermore, the solvent acidity was closely correlated to the functional groups connected to H atoms, which can affect charge distribution. Solvents or the tautomer of the solvents with hydroxyl groups such as alcohol, acetone, and N-methyl pyrrolidone, which are relatively more acidic, can lead to a violent reaction with changes in the lattice parameters of garnets. Ether compounds and saturated aliphatic hydrocarbons with relatively low acidity are highly stable against garnets. The proposed reaction mechanisms and rules may help in selecting appropriate solvents for different applications of garnets.

18.
J Phys Chem Lett ; 11(8): 3051-3057, 2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32223246

RESUMO

The dissolution of transition-metal (TM) cations into a liquid electrolyte from cathode material, such as Mn ion dissolution from LiMn2O4 (LMO), is detrimental to the cycling performance of Li-ion batteries (LIBs). Though much attention has been paid to this issue, the behavior of Mn dissolution has not been clearly revealed. In this work, by using a refined in situ ultraviolet-visible (UV-vis) spectroscopy technique, we monitored the concentration changes of dissolved Mn ions in liquid electrolyte from LMO at different state of charge (SOC), confirming the maximum dissolution concentration and rate at 4.3 V charged state and Mn2+ as the main species in the electrolyte. Through ab initio molecular dynamics (AIMD) simulations, we revealed that the Mn dissolution process is highly related to surface structure evolution, solvent decomposition, and lithium salt. These results will contribute to understanding TM dissolution mechanisms at working conditions as well as the design of stable cathodes.

19.
Sci Bull (Beijing) ; 65(22): 1907-1915, 2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36738056

RESUMO

The commercialization of rechargeable Li metal batteries is hindered by dendrite growth and volumetric variation. Herein, we report a Li-rich dual-phase Li-Cu alloy with built-in 3D conductive skeleton to replace conventional planar Li anode. The Li-Cu alloy is simply prepared by fusion of Li and Cu metals at a relatively low-temperature of 500 °C, followed by a cooling process where phase-segregation leads to metallic Li phase distributed in the network of LiCux solid solution phase. Different from the common Li alloy, the electrochemical alloying reaction between Li and Cu metals is not observed. Therefore, the lithiophilic LiCux nanowires guides conformal plating of Li and the porous framework provides superior dimensional stability for the anode. This unique ferroconcrete-like structure of Li-Cu alloy enables dendrite-free Li plating for an expanded cycling lifetime. Constructing a new type of Li alloy with in situ formed electrochemically inactive framework is a promising and easily scaled-up strategy toward practical application of Li metal anodes.

20.
Phys Rev Lett ; 103(18): 187201, 2009 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-19905826

RESUMO

It is demonstrated by means of density functional and ab initio quantum chemical calculations, that transition-metal-carbon systems have the potential to enhance the presently available area density of magnetic recording by 3 orders of magnitude. As a model system, Co2 benzene with a diameter of 0.5 nm is investigated. It shows a magnetic anisotropy of the order of 0.1 eV per molecule, large enough to store permanently 1 bit of information at temperatures considerably larger than 4 K. A similar performance can be expected, if cobalt dimers are deposited on graphene or on graphite.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA