Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 16(41): e2002486, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32964603

RESUMO

Tin-based compounds have received much attention as anode materials for lithium/sodium ion batteries owing to their high theoretical capacity. However, the huge volume change usually leads to the pulverization of electrode, giving rise to a poor cycle performance, which have severely hampered their practical application. Herein, highly durable yolk-shell SnSe2 nanospheres (SnSe2 @SeC) are prepared by a multistep templating method, with an in situ gas-phase selenization of the SnO2 @C hollow nanospheres. During this process, Se can be doped into the carbon shell with a tunable amount and form SeC bonds. Density functional theory calculation results reveal that the SeC bonding can enhance the charge transfer properties as well as the binding interaction between the SnSe2 core and the carbon shell, favoring an improved rate performance and a superior cyclability. As expected, the sample delivers reversible capacities of 441 and 406 mAh g-1 after 2000 cycles at 2 and 5 A g-1 , respectively, as the anode material for a sodium-ion battery. Such performances are significantly better than the control sample without the SeC bonding and also other metal selenide-based anodes, evidently showing the advantage of Se doping in the carbon shell.

2.
Mol Microbiol ; 105(2): 227-241, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28419599

RESUMO

Mycobacterium tuberculosis (Mtb) has a proteasome system that is essential for its ability to cause lethal infections in mice. A key component of the system is the proteasomal adenosine triphosphatase (ATPase) Mpa, which captures, unfolds, and translocates protein substrates into the Mtb proteasome core particle for degradation. Here, we report the crystal structures of near full-length hexameric Mtb Mpa in apo and ADP-bound forms. Surprisingly, the structures revealed a ubiquitin-like ß-grasp domain that precedes the proteasome-activating carboxyl terminus. This domain, which was only found in bacterial proteasomal ATPases, buries the carboxyl terminus of each protomer in the central channel of the hexamer and hinders the interaction of Mpa with the proteasome core protease. Thus, our work reveals the structure of a bacterial proteasomal ATPase in the hexameric form, and the structure finally explains why Mpa is unable to stimulate robust protein degradation in vitro in the absence of other, yet-to-be-identified co-factors.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Mycobacterium tuberculosis/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Citoplasma/metabolismo , Endopeptidases/metabolismo , Modelos Moleculares , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Domínios Proteicos , Subunidades Proteicas/metabolismo , Proteólise , Relação Estrutura-Atividade , Ubiquitinas/metabolismo
3.
Science ; 379(6630): eabn8934, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36701450

RESUMO

The structural integrity of vaccine antigens is critical to the generation of protective antibody responses, but the impact of protease activity on vaccination in vivo is poorly understood. We characterized protease activity in lymph nodes and found that antigens were rapidly degraded in the subcapsular sinus, paracortex, and interfollicular regions, whereas low protease activity and antigen degradation rates were detected in the vicinity of follicular dendritic cells (FDCs). Correlated with these findings, immunization regimens designed to target antigen to FDCs led to germinal centers dominantly targeting intact antigen, whereas traditional immunizations led to much weaker responses that equally targeted the intact immunogen and antigen breakdown products. Thus, spatially compartmentalized antigen proteolysis affects humoral immunity and can be exploited.


Assuntos
Linfócitos B , Endopeptidases , Imunização , Linfonodos , Vacinação , Animais , Humanos , Camundongos , Antígenos/imunologia , Linfócitos B/enzimologia , Endopeptidases/metabolismo , Centro Germinativo/enzimologia , Linfonodos/enzimologia , Proteólise
4.
Curr Opin Biotechnol ; 78: 102821, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36279815

RESUMO

Computational protein engineering has enabled the rational design of customized proteins, which has propelled both sequence-based and structure-based immunogen engineering and delivery. By discerning antigenic determinants of viral pathogens, computational methods have been implemented to successfully engineer representative viral strains able to elicit broadly neutralizing responses or present antigenic sites of viruses for focused immune responses. Combined with improvements in customizable nanoparticle design, immunogens are multivalently displayed to enhance immune responses. These rationally designed immunogens offer unique and powerful approaches to engineer vaccines for pathogens, which have eluded traditional approaches.


Assuntos
Vacinas contra a AIDS , Vacinas , Anticorpos Neutralizantes , Engenharia de Proteínas
5.
ChemSusChem ; 15(19): e202201121, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-35919954

RESUMO

Na3 V2 (PO4 )3 (NVP) is a widely studied cathode material for sodium-ion batteries because of its high ionic conductivity and attractive charge/discharge plateau (3.4 V vs. Na/Na+ ). However, its poor electronic conductivity and severe volume expansion during sodium storage need to be addressed before its intensive application could be realized. Herein, boron-doped NVP was synthesized through a facile electrospinning method. By adding boric acid into the reaction mixture during electrospinning followed by carbonization, boron could be directly inserted into the carbon matrix, giving rise to B-doped carbon nanofiber wrapped NVP. By tuning the doping amount, the boron-containing configurations could be facilely manipulated, playing different roles in promoting the sodium storage properties of the composite. Based on the calculation results, BC2 O enhanced sodium diffusion by lowering the energy barrier, while BCO2 improved the structural stability. Due to these specific functionalities of the configurations, the as-prepared composite with a balanced amount of BC2 O and BCO2 demonstrated superior sodium storage capacity of 113 mAh g-1 at 1 C, outstanding long cycling performance of 103 mAh g-1 at 10 C, and retained 91 mAh g-1 after 1500 cycles. This gave rise to a capacity loss of only 0.08‰ per cycle, much better than the undoped counterpart.

6.
ACS Nano ; 15(8): 13307-13318, 2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34297528

RESUMO

Metal selenides are considered as a group of promising candidates as the anode material for sodium-ion batteries due to their high theoretical capacity. However, the intrinsically low electrical and ionic conductivities as well as huge volume change during the charge-discharge process give rise to an inferior sodium storage capability, which severely hinders their practical application. Herein, we fabricated In2Se3/CoSe2 hollow nanorods composed of In2Se3/CoIn2/CoSe2 by growing cobalt-based zeolitic imidazolate framework ZIF-67 on the surface of indium-based metal-organic framework MIL-68, followed by in situ gaseous selenization. Because of the CoIn2 alloy phase in between In2Se3 and CoSe2, a heterostructure consisting of two alloy/selenide interfaces has been successfully constructed, offering synergistically enhanced electrical conductivity, Na diffusion process, and structural stability, in comparison to the single CoIn2-free interface with only two metal selenides. As expected, this nanoconstruction delivers a high reversible capacity of 297.5 and 205.5 mAh g-1 at 5 and 10 A g-1 after 2000 cycles, respectively, and a superior rate performance of 371.6 mAh g-1 at even 20 A g-1.

7.
Chem Commun (Camb) ; 57(81): 10520-10523, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34550119

RESUMO

Self-supported materials have been widely used in high-power energy storage devices due to the unique construction offering fast charge transfer from the active material to the conducting substrate. However, the electron conduction in the active material presents limitations on the overall performance of the electrode. In this work, we have fabricated hierarchical ZnO nanoflake arrays vertically grown on a nickel foam substrate and wrapped tightly by wrinkled porous CoS nanofilms (ZnO NFAs/CoS NFs) via a hydrothermal process and subsequent electrodeposition. Such an optimized ZnO NFAs/CoS NFs electrode exhibits an excellent specific capacitance of 1416 F g-1 at a current density of 1 A g-1, and remarkable cycling stability with 85.3% retention of the initial capacitance at 10 A g-1 after 5000 cycles. Additionally, density functional theory (DFT) calculations have been performed to further investigate the mechanism, proving the facilitated electron transfer from CoS to ZnO, giving rise to the superior electrochemical performance.

8.
Sci Immunol ; 6(66): eabf1152, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34860581

RESUMO

Saponins are potent and safe vaccine adjuvants, but their mechanisms of action remain incompletely understood. Here, we explored the properties of several saponin formulations, including immune-stimulatory complexes (ISCOMs) formed by the self-assembly of saponin and phospholipids in the absence or presence of the Toll-like receptor 4 agonist monophosphoryl lipid A (MPLA). We found that MPLA self-assembles with saponins to form particles physically resembling ISCOMs, which we termed saponin/MPLA nanoparticles (SMNP). Saponin-containing adjuvants exhibited distinctive mechanisms of action, altering lymph flow in a mast cell­dependent manner and promoting antigen entry into draining lymph nodes. SMNP was particularly effective, exhibiting even greater potency than the compositionally related adjuvant AS01B in mice, and primed robust germinal center B cell, TFH, and HIV tier 2 neutralizing antibodies in nonhuman primates. Together, these findings shed new light on mechanisms by which saponin adjuvants act to promote the immune response and suggest that SMNP may be a promising adjuvant in the setting of HIV, SARS-CoV-2, and other pathogens.


Assuntos
Imunidade Adaptativa/efeitos dos fármacos , Adjuvantes Imunológicos/farmacologia , Linfa/efeitos dos fármacos , Saponinas/farmacologia , Receptores Toll-Like/agonistas , Animais , Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Feminino , Linfa/fisiologia , Macaca mulatta , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Nanopartículas , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA