Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Assunto principal
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 15189, 2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-36071079

RESUMO

Mid-Brunhes Event (MBE) occurred at approximately 420 ka between Marine Isotope Stage 11 and 12, and is considered the most pronounced climatic shift during the last ~ 800 kyrs. On the other hand, it is unclear if the MBE was global, despite being observed in the high-latitude Northern Hemispheric cryosphere in terms of climate systems. A 5.35-m long gravity core ARC5-MA01 was obtained from the northern Mendeleev Ridge in the western Arctic Ocean to track the paleoenvironmental changes in terms of the terrigenous sedimentation in response to the glacial-interglacial climate changes across the MBE. Geochemical proxies (biogenic opal, total organic carbon, C/N ratio, carbon isotope of organic matter, and calcium carbonate) of MA01 suggest that the terrigenous input was generally higher during the interglacial periods. Based on a mineralogical examination, most of the terrigenous input was attributed to the abundance of dolomite and the increased kaolinite content from North America. In particular, most paleoceanographic proxies showed that the terrigenous input from North America was enhanced distinctly during the post-MBE interglacial periods. These results suggest that the MBE in the western Arctic Ocean was a global climatic shift closely linked to cryospheric development in North America during the middle Pleistocene.


Assuntos
Isótopos de Carbono , Regiões Árticas , América do Norte , Oceanos e Mares
2.
Nat Commun ; 12(1): 3948, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34168158

RESUMO

The Antarctic Circumpolar Current (ACC) plays a crucial role in global ocean circulation by fostering deep-water upwelling and formation of new water masses. On geological time-scales, ACC variations are poorly constrained beyond the last glacial. Here, we reconstruct changes in ACC strength in the central Drake Passage in vicinity of the modern Polar Front over a complete glacial-interglacial cycle (i.e., the past 140,000 years), based on sediment grain-size and geochemical characteristics. We found significant glacial-interglacial changes of ACC flow speed, with weakened current strength during glacials and a stronger circulation in interglacials. Superimposed on these orbital-scale changes are high-amplitude millennial-scale fluctuations, with ACC strength maxima correlating with diatom-based Antarctic winter sea-ice minima, particularly during full glacial conditions. We infer that the ACC is closely linked to Southern Hemisphere millennial-scale climate oscillations, amplified through Antarctic sea ice extent changes. These strong ACC variations modulated Pacific-Atlantic water exchange via the "cold water route" and potentially affected the Atlantic Meridional Overturning Circulation and marine carbon storage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA