Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36835485

RESUMO

Rice leaf width (RLW) is a crucial determinant of photosynthetic area. Despite the discovery of several genes controlling RLW, the underlying genetic architecture remains unclear. In order to better understand RLW, this study conducted a genome-wide association study (GWAS) on 351 accessions from the rice diversity population II (RDP-II). The results revealed 12 loci associated with leaf width (LALW). In LALW4, we identified one gene, Narrow Leaf 22 (NAL22), whose polymorphisms and expression levels were associated with RLW variation. Knocking out this gene in Zhonghua11, using CRISPR/Cas9 gene editing technology, resulted in a short and narrow leaf phenotype. However, seed width remained unchanged. Additionally, we discovered that the vein width and expression levels of genes associated with cell division were suppressed in nal22 mutants. Gibberellin (GA) was also found to negatively regulate NAL22 expression and impact RLW. In summary, we dissected the genetic architecture of RLW and identified a gene, NAL22, which provides new loci for further RLW studies and a target gene for leaf shape design in modern rice breeding.


Assuntos
Estudo de Associação Genômica Ampla , Oryza , Estudo de Associação Genômica Ampla/métodos , Genótipo , Oryza/genética , Edição de Genes , Melhoramento Vegetal/métodos , Folhas de Planta/genética
2.
Int J Mol Sci ; 24(14)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37511211

RESUMO

Plant height is one of the most crucial components of plant structure. However, due to its complexity, the genetic architecture of rice plant height has not been fully elucidated. In this study, we performed a genome-wide association study (GWAS) to determine rice plant height using 178 commercial rice varieties and identified 37 loci associated with rice plant height (LAPH). Among these loci, in LAPH2, we identified a polygalacturonase gene, OsPG3, which was genetically and functionally associated with rice plant height. The rice plant exhibits a super dwarf phenotype when the knockout of the OsPG3 gene occurs via CRISPR-Cas9 gene-editing technology. RNA-Seq analysis indicated that OsPG3 modulates the expression of genes involved in phytohormone metabolism and cell-wall-biosynthesis pathways. Our findings suggest that OsPG3 plays a vital role in controlling rice plant height by regulating cell wall biosynthesis. Given that rice architecture is one of the most critical phenotypes in rice breeding, OsPG3 has potential in rice's molecular design breeding toward an ideal plant height.


Assuntos
Estudo de Associação Genômica Ampla , Oryza , Oryza/genética , Melhoramento Vegetal , Genes de Plantas , Fenótipo
3.
Ecotoxicol Environ Saf ; 240: 113683, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35653975

RESUMO

In order to identify the key transport process that determines the Cd concentration in brown rice, this study used 21 hybrid rice varieties as experimental materials and conducted field experiments in Qiyang (cadmium-contaminated site) and Yongding (low-cadmium site). Cd concentrations in 8 organs were measured, and bioconcentration factors and transfer factor were further calculated. The results showed that the Cd concentrations of the organs related to the xylem transport were as follows: root > node > stem > leaf sheath > leaf. In the phloem, the Cd concentrations were as follows: rachis > brown rice > rice husk. And the results of the correlation analysis found that Cd concentration between brown rice and root showed a significant positive correlation in Cd-contaminated site, but no significant correlation in low-cadmium site. Meanwhile, at both experimental sites, the Cd concentration of brown rice showed the most significant correlation with the phloem transfer factor from leaf and leaf sheath to brown rice. Principal Component Analysis (PCA) and stepwise regression analysis likewise found that Cd concentration in leaf and leaf sheath and their phloem transport of Cd to brown rice were significantly and positively correlated with Cd concentration in brown rice. The above results showed that the transport of leaf and leaf sheath to brown rice was a key process, and played a more important role in the accumulation of cadmium in brown rice than in root.


Assuntos
Oryza , Poluentes do Solo , Cádmio/análise , Grão Comestível/química , Solo , Poluentes do Solo/análise , Fator de Transferência/farmacologia
4.
Plant Biotechnol J ; 16(3): 737-748, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28851008

RESUMO

Potassium (K+ ), an abundant cation in plant cells, is important in fruit development and plant resistance. However, how cellular K+ is directed by potassium channels in fruit development and quality formation of strawberry (Fragaria × ananassa) is not yet fully clear. Here, a two-pore K+ (TPK) channel gene in strawberry, FaTPK1, was cloned using reverse transcription-PCR. A green fluorescent protein subcellular localization analysis showed that FaTPK1 localized in the vacuole membrane. A transcription analysis indicated that the mRNA expression level of FaTPK1 increased rapidly and was maintained at a high level in ripened fruit, which was coupled with the fruit's red colour development, suggesting that FaTPK1 is related to fruit quality formation. The down- and up-regulation of the FaTPK1 mRNA expression levels using RNA interference and overexpression, respectively, inhibited and promoted fruit ripening, respectively, as demonstrated by consistent changes in firmness and the contents of soluble sugars, anthocyanin and abscisic acid, as well as the transcript levels of ripening-regulated genes PG1 (polygalacturonase), GAL6 (beta-galactosidase), XYL2 (D-xylulose reductase), SUT1 (sucrose transporter), CHS (chalcone synthase) and CHI (chalcone flavanone isomerase). Additionally, the regulatory changes influenced fruit resistance to Botrytis cinerea. An isothermal calorimetry analysis showed that the Escherichia coli-expressed FaTPK1 recombinant protein could bind K+ with a binding constant of 2.1 × 10-3  m-1 and a dissociation constant of 476 µm. Thus, the strawberry TPK1 is a ubiquitously expressed, tonoplast-localized two-pore potassium channel that plays important roles in fruit ripening and quality formation.


Assuntos
Fragaria/metabolismo , Frutas/metabolismo , Proteínas de Plantas/metabolismo , Canais de Potássio/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia
5.
Front Pharmacol ; 15: 1336310, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38389922

RESUMO

CD10, a zinc-dependent metalloprotease found on the cell surface, plays a pivotal role in an array of physiological and pathological processes including cardiovascular regulation, immune function, fetal development, pain response, oncogenesis, and aging. Recognized as a biomarker for hematopoietic and tissue stem cells, CD10 has garnered attention for its prognostic potential in the progression of leukemia and various solid tumors. Recent studies underscore its regulatory significance and therapeutic promise in combating Alzheimer's disease (AD), and it is noted for its protective role in preventing heart failure (HF), obesity, and type-2 diabetes. Furthermore, CD10/substance P interaction has also been shown to contribute to the pain signaling regulation and immunomodulation in diseases such as complex regional pain syndrome (CRPS) and osteoarthritis (OA). The emergence of COVID-19 has sparked interest in CD10's involvement in the disease's pathogenesis. Given its association with multiple disease states, CD10 is a prime therapeutic target; inhibitors targeting CD10 are now being advanced as therapeutic agents. This review compiles recent and earlier literature on CD10, elucidating its physicochemical attributes, tissue-specific expression, and molecular functions. Furthermore, it details the association of CD10 with various diseases and the clinical advancements of its inhibitors, providing a comprehensive overview of its growing significance in medical research.

6.
Plants (Basel) ; 12(6)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36987076

RESUMO

Rice blast caused by pathogenic fungus Magnaporthe oryzae is one of the most serious diseases in rice. The pyramiding of effective resistance genes into rice varieties is a potential approach to reduce the damage of blast disease. In this study, combinations of three resistance genes, Pigm, Pi48 and Pi49, were introduced into a thermo-sensitive genic male sterile (PTGMS) line Chuang5S through marker-assisted selection. The results showed that the blast resistance of improved lines increased significantly compared with Chuang5S, and the three gene pyramiding lines (Pigm + Pi48 + Pi49) had higher rice blast resistance level than monogenic line and digenic lines (Pigm +Pi48, Pigm + Pi49). The genetic backgrounds of the improved lines were highly similar (>90%) to the recurrent parent Chuang5S by using the RICE10K SNP chip. In addition, agronomic traits evaluation also showed pyramiding lines with two or three genes similar to Chuang5S. The yields of the hybrids developed from improved PTGMS lines and Chuang5S are not significantly different. The newly developed PTGMS lines can be practically used for the breeding of parental lines and hybrid varieties with broad spectrum blast resistance.

7.
Front Physiol ; 14: 1279548, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38250662

RESUMO

Aging is a natural aspect of mammalian life. Although cellular mortality is inevitable, various diseases can hasten the aging process, resulting in abnormal or premature senescence. As cells age, they experience distinctive morphological and biochemical shifts, compromising their functions. Research has illuminated that cellular senescence coincides with significant alterations in the microRNA (miRNA) expression profile. Notably, a subset of aging-associated miRNAs, originally encoded by nuclear DNA, relocate to mitochondria, manifesting a mitochondria-specific presence. Additionally, mitochondria themselves house miRNAs encoded by mitochondrial DNA (mtDNA). These mitochondria-residing miRNAs, collectively referred to as mitochondrial miRNAs (mitomiRs), have been shown to influence mtDNA transcription and protein synthesis, thereby impacting mitochondrial functionality and cellular behavior. Recent studies suggest that mitomiRs serve as critical sensors for cellular senescence, exerting control over mitochondrial homeostasis and influencing metabolic reprogramming, redox equilibrium, apoptosis, mitophagy, and calcium homeostasis-all processes intimately connected to senescence. This review synthesizes current findings on mitomiRs, their mitochondrial targets, and functions, while also exploring their involvement in cellular aging. Our goal is to shed light on the potential molecular mechanisms by which mitomiRs contribute to the aging process.

8.
Cell Rep ; 42(10): 113315, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37862164

RESUMO

The receptor protein PEX5, an important component of peroxisomes, regulates growth, development, and immunity in yeast and mammals. PEX5 also influences growth and development in plants, but whether it participates in plant immunity has remained unclear. Here, we report that knockdown of OsPEX5 enhances resistance to the rice blast fungus Magnaporthe oryzae. We demonstrate that OsPEX5 interacts with the E3 ubiquitin ligase APIP6, a positive regulator of plant immunity. APIP6 ubiquitinates OsPEX5 in vitro and promotes its degradation in vivo via the 26S proteasome pathway. In addition, OsPEX5 interacts with the aldehyde dehydrogenase OsALDH2B1, which functions in growth-defense trade-offs in rice. OsPEX5 stabilizes OsALDH2B1 to enhance its repression of the defense-related gene OsAOS2. Our study thus uncovers a previously unrecognized hierarchical regulatory mechanism in which an E3 ubiquitin ligase targets a peroxisome receptor protein that negatively regulates immunity in rice by stabilizing an aldehyde dehydrogenase that suppresses defense gene expression.


Assuntos
Ascomicetos , Magnaporthe , Magnaporthe/metabolismo , Ascomicetos/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Aldeído Desidrogenase/genética , Aldeído Desidrogenase/metabolismo , Doenças das Plantas , Resistência à Doença , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
9.
Phytopathology ; 102(8): 779-86, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22779744

RESUMO

Tianjingyeshengdao' (TY) is a rice cultivar with durable resistance to populations of Magnaporthe oryzae (the causal agent of blast) in China. To understand the genetic basis of its resistance to blast, we developed a population of recombinant inbred lines from a cross between TY and the highly susceptible 'CO39' for gene mapping analysis. In total, 22 quantitative trait loci (QTLs) controlling rice blast resistance were identified on chromosomes 1, 3, 4, 5, 6, 9, 11, and 12 from the evaluation of four disease parameters in both greenhouse and blast nursery conditions. Among these QTLs, 19 were contributed by TY and three by CO39. Two QTL clusters on chromosome 6 and 12 were named Pi2-1 and Pi51(t), respectively. Pi2-1 was detected under both growth chamber and natural blast nursery conditions, and explained 31.24 to 59.73% of the phenotypic variation. Pi51(t) was only detected in the natural blast nursery and explained 3.67 to 10.37% of the phenotypic variation. Our results demonstrate that the durable resistance in TY is controlled by two major and seven minor genes. Identification of the markers linked to both Pi2-1 and Pi51(t) in this study should be useful for marker-aided selection in rice breeding programs as well as for molecular cloning of the identified resistance genes.


Assuntos
Cromossomos de Plantas/genética , Magnaporthe/patogenicidade , Oryza/genética , Oryza/microbiologia , Locos de Características Quantitativas/genética , Imunidade Vegetal/genética
10.
Plant Physiol Biochem ; 183: 85-95, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35569169

RESUMO

The glyoxalase pathway plays a vital role in the chemical detoxification of methylglyoxal (MG) in biological systems. Our previous study suggested that OsGLYI3 may be effective in seed natural aging. In this study, the rice OsGLYI3 gene was cloned and characterized as specifically expressed in the seed. The accelerated aging (AA) treatment results indicated significant roles of OsGLYI3 in seed longevity and vigor, as the seeds of the transgenic lines with overexpressed and knocked-out OsGLYI3 exhibited higher and lower germination, respectively. The AA treatment also increased the superoxide dismutase (SOD) activity in the overexpressed transgenic seeds compared to the wild-type seeds yet lowered the SOD activity in the CRISPR/Cas9-derived transgenic rice lines. Rice OsGLYI3 was markedly upregulated in response to NaCl induced stress conditions. Compared to wild-type plants, overexpressed transgenic rice lines exhibited increased GLYI activity, decreased MG levels and improved salt stress tolerance, while CRISPR/Cas9 knockout transgenic rice lines showed decreased glyoxalase I activity, increased MG levels, and greater sensitivity to stress treatments with NaCl. Collectively, our results confirmed for the first time that OsGLYI3 is specifically expressed in rice seeds and contributes to seed longevity and salt stress tolerance.


Assuntos
Lactoilglutationa Liase , Oryza , Regulação da Expressão Gênica de Plantas , Germinação/genética , Lactoilglutationa Liase/genética , Lactoilglutationa Liase/metabolismo , Longevidade , Oryza/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Aldeído Pirúvico/metabolismo , Tolerância ao Sal , Sementes/metabolismo , Cloreto de Sódio/metabolismo , Cloreto de Sódio/farmacologia , Estresse Fisiológico/genética , Superóxido Dismutase/metabolismo
11.
Phytopathology ; 101(5): 620-6, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21171885

RESUMO

The indica rice cultivar Xiangzi 3150 (XZ3150) confers a high level of resistance to 95% of the isolates of Magnaporthe oryzae (the agent of rice blast disease) collected in Hunan Province, China. To identify the resistance (R) gene(s) controlling the high level of resistance in this cultivar, we developed 286 F(9) recombinant inbred lines (RILs) from a cross between XZ3150 and the highly susceptible cultivar CO39. Inoculation of the RILs and an F(2) population from a cross between the two cultivars with the avirulent isolate 193-1-1 in the growth chamber indicated the presence of two dominant R genes in XZ3150. A linkage map with 134 polymorphic simple sequence repeat and single feature polymorphism markers was constructed with the genotype data of the 286 RILs. Composite interval mapping (CIM) using the results of 193-1-1 inoculation showed that two major R genes, designated Pi47 and Pi48, were located between RM206 and RM224 on chromosome 11, and between RM5364 and RM7102 on chromosome 12, respectively. Interestingly, the CIM analysis of the four resistant components of the RILs to the field blast population revealed that Pi47 and Pi48 were also the major genetic factors responsible for the field resistance in XZ3150. The DNA markers linked to the new R genes identified in this study should be useful for further fine mapping, gene cloning, and marker-aided breeding of blast-resistant rice cultivars.


Assuntos
Genes de Plantas/genética , Magnaporthe/patogenicidade , Oryza/genética , Doenças das Plantas/genética , Imunidade Vegetal/genética , China , Mapeamento Cromossômico , Cruzamentos Genéticos , Marcadores Genéticos , Genótipo , Magnaporthe/imunologia , Repetições Minissatélites/genética , Oryza/imunologia , Oryza/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Polimorfismo Genético , Locos de Características Quantitativas , Especificidade da Espécie
12.
Rice (N Y) ; 14(1): 98, 2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34825994

RESUMO

Cold tolerance at the bud burst stage (CTB) is a key trait for direct-seeded rice. Although quantitative trait loci (QTL) affecting CTB in rice have been mapped using traditional linkage mapping and genome-wide association study (GWAS) methods, the underlying genes remain unknown. In this study, we evaluated the CTB phenotype of 339 cultivars in the Rice Diversity Panel II (RDP II) collection. GWAS identified four QTLs associated with CTB (qCTBs), distributed on chromosomes 1-3. Among them, qCTB-1-1 overlaps with Osa-miR319b, a known cold tolerance micro RNA gene. The other three qCTBs have not been reported. In addition, we characterised the candidate gene OsRab11C1 for qCTB-1-2 that encodes a Rab protein belonging to the small GTP-binding protein family. Overexpression of OsRab11C1 significantly reduced CTB, while gene knockout elevated CTB as well as cold tolerance at the seedling stage, suggesting that OsRab11C1 negatively regulates rice cold tolerance. Molecular analysis revealed that OsRab11C1 modulates cold tolerance by suppressing the abscisic acid signalling pathway and proline biosynthesis. Using RDP II and GWAS, we identified four qCTBs that are involved in CTB and determined the function of the candidate gene OsRab11C1 in cold tolerance. Our results demonstrate that OsRab11C1 is a negative regulator of cold tolerance and knocking out of the gene by genome-editing may provide enhanced cold tolerance in rice.

14.
Food Chem ; 353: 129461, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33735769

RESUMO

In this study, we compared the physicochemical properties and starch structures of hybrid rice varieties with similar apparent amylose content but different taste values. In addition to the apparent amylose content, gel permeation chromatography analysis showed that the higher proportions of amylopectin short chains and relatively lower proportions of amylopectin long chains, which could lead to higher peak viscosity and breakdown value, as well as a softer and stickier texture of cooked rice, were the key factors in determining the eating quality of hybrid rice. High-performance anion-exchange chromatography analyses showed that the proportion of amylopectin short chains (degree of polymerization 6-10) and intermediate chains (degree of polymerization 13-24), which might affect the gelatinisation enthalpy and crystallinity, also contributed greatly to the eating quality of hybrid rice. Moreover, this study indicated that a greater diversity of forms and sizes of starch granules might influence the eating quality of hybrid rice.


Assuntos
Amilose/química , Oryza/química , Amido/química , Paladar , Amilopectina/química , Quimera , Culinária , Farinha , Gelatina/química , Oryza/genética , Viscosidade , Difração de Raios X
15.
3 Biotech ; 10(12): 539, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33224708

RESUMO

To reduce cadmium (Cd) accumulation in the grains of rice Chuang-5S (C5S), a gene OsHMA3 and a QTL qlGCd3 related to low-Cd accumulation were separately introgressed into the recipient parent C5S (male sterile line) by molecular marker-assisted breeding. The recurrent parent C5S was then replaced by NIL (near-isogenic line)-C5S with the blast resistance gene Pi48 or Pi49 to construct the BC2F1 generation. Finally, two groups of improved materials of C5S, which pyramided the gene/QTL associated with low-Cd accumulation and blast resistance gene, were developed. The Cd accumulation, agronomic traits, genetic background and blast resistance of these improved C5S materials were evaluated. The results showed that the average Cd content of improved C5S material carrying OsHMA3 and qlGCd3 was, respectively, reduced by 52.8% and 50.8% compared with that of C5S, indicating that the gene related to low-Cd accumulation was, successfully, transferred to C5S with stable expression. The main agronomic traits of the improved materials were consistent with those of C5S. Besides, the improved C5S lines showed stronger blast resistance than C5S and more than 88% similarity to the genetic background of C5S. These two groups of improved materials may be further utilized for the breeding of advanced male sterile lines or superior hybrid rice.

16.
Front Nutr ; 7: 583997, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33490097

RESUMO

In this study, by analyzing the relationship between hybrid combinations and parental lines, we found that the eating quality traits of hybrid combinations were determined by both parents. The sterile lines determined the overall eating quality characteristics of the hybrid combinations. For the same sterile line, there were some correlations between the hybrid combinations and restorer lines in terms of taste value, rapid visco analyzer breakdown and setback values, apparent amylose content, and cooked rice hardness and stickiness. Analysis of the starch fine structure between hybrid combinations and their restorer lines demonstrated positive correlations between them in terms of short-branch amylopectin chains and amylose. Moreover, different allelic combinations of the Wx gene showed different genetic effects on the eating quality traits of hybrid rice. Overall, this study provides a framework for the development of hybrid rice with superior eating quality.

17.
Rice (N Y) ; 12(1): 47, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31309315

RESUMO

BACKGROUND: Effective management of rice blast, caused by the fungus Magnaporthe oryzae, requires an understanding of the genetic architecture of the resistance to the disease in rice. Rice resistance varies with M. oryzae strains, and many quantitative trait loci (QTLs) affecting rice blast resistance have been mapped using different strains of M. oryzae from different areas. However, little is known about the genetic architecture of rice resistance against the M. oryzae population in Hunan Province, which is a main rice production area in South China. RESULTS: In this study, we used three isolates from Hunan Province and the rice diversity panel 1 to perform a genome-wide association study (GWAS) of blast resistance in rice. A total of 56 QTLs were identified. One of the QTLs is localized with the resistance gene Pik locus which confers resistance to all three isolates. Genomic sequence analysis of the resistant cultivars led to the identification of a new Pik allele, which we named Pikx. Yeast two-hybrid and co-immunoprecipitation assays between AvrPiks and Pikx confirmed that Pikx is a new allele at the Pik locus. CONCLUSIONS: Our GWAS has identified many new blast resistance QTLs. The identified new Pik allele Pikx will be useful for breeding cultivars with high resistance to blast in Hunan and other South China provinces. Further research on the relationship between AvrPiks and Pikx will provide new insights into the molecular mechanism of rice resistance to M. oryzae.

18.
Acta Crystallogr Sect E Struct Rep Online ; 64(Pt 7): o1331, 2008 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-21202955

RESUMO

The asymmetric unit of the title compound, C(19)H(12)N(4)O·H(2)O, contains one organic molecule and one solvent water mol-ecule, which are connected by N-H⋯O and O-H⋯N hydrogen bonds. In addition, there is one intra-molecular O-H⋯N hydrogen bond. The organic mol-ecule is essentially planar (r.m.s. deviation for all non-H atoms = 0.028 Å).

19.
Plant Physiol Biochem ; 130: 663-677, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30131207

RESUMO

Sweet cherry (Prunus avium L.) fruits are classified into dark-red and bicolored cultivars based on their anthocyanin contents; however, the mechanisms regulating the accumulation of these pigments are unclear. Here, we reveal that anthocyanin accumulation is highly dependent on light in bicolored 'Rainier' cherries, while it is only slightly light dependent in the dark-red 'Hongdeng' fruits. To reveal the transcriptional mechanisms regulating light-dependent anthocyanin accumulation in bicolored 'Rainier' cherries, we sequenced the transcriptomes of fruits grown in light or in darkness. Genes encoding the anthocyanin biosynthesis enzymes chalcone synthase, chalcone isomerase, flavanone 3-hydroxylase, and flavonoid 3'-hydroxylase were significantly upregulated by light in the bicolored fruits. Most of the differentially expressed regulatory genes were known to be involved in the light or hormone signal transduction pathways, such as those encoding protein phosphatase 2Cs, PHYTOCHROME INTERACTING FACTOR 3, phytochromes, and ELONGATED HYPOCOTYL 5. The expression levels of 32 highly expressed transcription factors were found to be significantly altered by light in the bicolored fruits, including members of the basic leucine zipper, R2R3-MYB, and WRKY transcription factor families. A co-expression network analysis further revealed that many of the light-regulated genes were co-expressed with genes involved in the abscisic acid and gibberellic acid signaling pathways, suggesting that these phytohormones play important roles in light-dependent anthocyanin biosynthesis. Together, our data reveal multiple roles for light in regulating anthocyanin biosynthesis in differently colored cherries.


Assuntos
Antocianinas/análise , Frutas/química , Prunus avium/química , Aciltransferases/metabolismo , Antocianinas/metabolismo , Cor , Sistema Enzimático do Citocromo P-450/metabolismo , Frutas/metabolismo , Frutas/efeitos da radiação , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Liases Intramoleculares/metabolismo , Luz , Oxigenases de Função Mista/metabolismo , Prunus avium/genética , Prunus avium/metabolismo , Prunus avium/efeitos da radiação , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/efeitos da radiação , Transcriptoma/genética
20.
Dalton Trans ; 46(47): 16493-16504, 2017 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-29148553

RESUMO

The reaction of 2-hydroxyl-4-carboxylbenzenesulfonic acid (H3L) and rare earth (RE) metal nitrates together with two N-heterocyclic ligands gives rise to the formation of 38 complexes, namely, [La(H2L)2(ox)0.5(H2O)4]n·2nH2O (1-La) (ox = oxalate), [RE2(H2L)2 (ox)(H2O)12]·2(H2L)·8H2O (2-RE) (RE = Nd, Sm, Eu, Gd, Tb, Dy), [RE(SO4)(H2O)7]·(H2L)·3H2O (3-RE) (RE = Ho, Er, Tm, Yb, Lu and Y), [RE(L)(H2O)3]n·nH2O (4-RE) (RE = Er, Tm, Yb and Lu), [RE(L)(2,2'-bipy)(H2O)]n (5-RE) (RE = La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho and Y, 2,2'-bipy = 2,2'-bipyridine), [RE(L)(1,10-phen)(H2O)]n (6-RE) (RE = La, Pr, Nd, Sm, Eu, 1,10-phen = 1,10-phenanthroline), and [RE(L')(1,10-phen)2(H2O)]n (7-RE) (RE = Gd, Tb, Ho, Er, Yb and Lu, H3L' = 2-hydroxy-3-nitro-4-carboxybenzenesulfonic acid), which have been characterized by elemental analysis, IR, TG, PL, powder and single-crystal X-ray diffraction. Complexes 1-La, 2-RE and 3-RE present zigzag chain, di- and mono-nuclear structures, in which H2L- acts as a counterion and monodentate and µ2-bridging monoanions. For the three species, light RE metal cations tend to induce the formation of oxalate while heavy RE metal cations tend to induce the formation of sulfate. Complexes 4-RE and 5-RE exhibit layer structures incorporating helical chains, in which the L3- trianion presents µ3 and µ4 coordination modes. Complexes 6-RE containing light RE metal cations show layer structures incorporating helical chains, while complexes 7-RE containing heavy RE metal cations have helical chain structures supported by the bridging of in situ generated L'3-. Remarkably, the in situ generated oxalates in 1-La and 2-RE, as well as the in situ generated L'3- in 7-RE, also play a crucial role in determining the structures of these complexes. Structure evolutions make these complexes present various luminescent emissions. Complexes 3-Tm, 3-Yb, 3-Lu, 3-Y and 4-Lu exhibit ultraviolet emissions from 354 to 370 nm. Complexes 1-La and 6-La present blue emissions at 442 and 463 nm. Complexes 2-Eu, 2-Tb, 5-Tb and 7-Tb exhibit characteristic red and green emissions while the complex 5-Y presents a green emission at 501 nm. Meanwhile, complexes 2-Nd, 3-Yb, 4-Yb, 5-Nd, 6-Nd, and 7-Yb show near-infrared (NIR) emissions. Moreover, 2-Eu, 2-Tb, 5-Tb, 7-Tb and 5-Y show longer luminescence lifetimes from 390.47 to 1211.57 µs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA