Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Microbiol ; 22(1): 296, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36494624

RESUMO

BACKGROUND: Phosphate-solubilizing bacteria (PSB) can enhance plant growth and phosphorus (P) solubilization, it also has been reported to reduce the negative effects of overused agricultural fertilizer in farmland and protect the soil environment. However, the mechanism behind this interaction has not been fully elucidated. RESULTS: In this study, we screened out Pseudomonas moraviensis, Bacillus safensis, and Falsibacillus pallidus which can both solubilize P efficiently and produce indole-3-acetic acid (IAA) from sandy fluvo-aquic soils. The yield of wheat (Triticum aestivum) under PSB inoculation significantly increased up to 14.42% (P < 0.05) compared with the control treatment in phosphate fertilizer-used farmland. Besides promoting wheat growth, we found the labile P fraction in soil was significantly increased by over 122.04% (P < 0.05) under PSB inoculation compared with it in soils without, in parallel, the stable P fraction was significantly reduced by over 46.89% (P < 0.05). Furthermore, PSB inoculation increased the soil microbial biomass and activity, indicating that PSB screened out in this work performed a remarkable ability to colonize the soils in the wheat field. CONCLUSION: PSB from sandy fluvo-aquic soil improve wheat growth and crop productivity by increasing the labile P fraction and IAA content in the greenhouse and wheat field. Our work provides an environment and economy-friendly bacterial resource that potentially promotes sustainable agricultural development in the long term.


Assuntos
Fósforo , Triticum , Triticum/microbiologia , Fosfatos , Fertilizantes , Bactérias , Microbiologia do Solo , Solo
2.
Sensors (Basel) ; 16(11)2016 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-27827923

RESUMO

The purpose of this study was to develop a portable surface plasmon resonance (SPR) bioanalyzer for the sensitive detection of Escherichia coli O157:H7 in comparison with an enzyme-linked immunosorbent assay (ELISA). The experimental setup mainly consisted of an integrated biosensor and a homemade microfluidic cell with a three-way solenoid valve. In order to detect Escherichia coli O157:H7 using the SPR immunoassay, 3-mercaptopropionic acid (3-MPA) was chemisorbed onto a gold surface via covalent bond for the immobilization of biological species. 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) were used as crosslinker reagents to enable the reaction between 3-MPA and Escherichia coli O157:H7 antibodies by covalent -CO-NH- amide bonding. The experimental results were obtained from the Escherichia coli O157:H7 positive samples prepared by 10-, 20-, 40-, 80-, and 160-fold dilution respectively, which show that a good linear relationship with the correlation coefficient R of 0.982 existed between the response units from the portable SPR bioanalyzer and the concentration of Escherichia coli O157:H7 positive samples. Moreover, the theoretical detection limit of 1.87 × 10³ cfu/mL was calculated from the positive control samples. Compared with the Escherichia coli O157:H7 ELISA kit, the sensitivity of this portable SPR bioanalyzer is four orders of magnitude higher than the ELISA kit. The results demonstrate that the portable SPR bioanalyzer could provide an alternative method for the quantitative and sensitive determination of Escherichia coli O157:H7 in field.


Assuntos
Técnicas Biossensoriais/métodos , Ressonância de Plasmônio de Superfície/métodos , Ensaio de Imunoadsorção Enzimática , Escherichia coli O157/fisiologia , Imunoensaio/métodos , Succinimidas
3.
Signal Transduct Target Ther ; 8(1): 357, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37726282

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), showing high infectiousness, resulted in an ongoing pandemic termed coronavirus disease 2019 (COVID-19). COVID-19 cases often experience acute respiratory distress syndrome, which has caused millions of deaths. Apart from triggering inflammatory and immune responses, many viral infections can cause programmed cell death in infected cells. Cell death mechanisms have a vital role in maintaining a suitable environment to achieve normal cell functionality. Nonetheless, these processes are dysregulated, potentially contributing to disease pathogenesis. Over the past decades, multiple cell death pathways are becoming better understood. Growing evidence suggests that the induction of cell death by the coronavirus may significantly contributes to viral infection and pathogenicity. However, the interaction of SARS-CoV-2 with cell death, together with its associated mechanisms, is yet to be elucidated. In this review, we summarize the existing evidence concerning the molecular modulation of cell death in SARS-CoV-2 infection as well as viral-host interactions, which may shed new light on antiviral therapy against SARS-CoV-2.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Morte Celular/genética , Apoptose , Pandemias
4.
PLoS One ; 10(5): e0110809, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25992605

RESUMO

The accumulation of a considerable quantity of gibberellin fermentation residue (GFR) during gibberellic acid A3 (GA3) production not only results in the waste of many resources, but also poses a potential hazard to the environment, indicating that the safe treatment of GFR has become an urgent issue for GA3 industry. The key to recycle GFR is converting it into an available resource and removing the GA3 residue. To this end, we established a co-bioconversion process in this study using house fly larvae (HFL) and microbes (Corynebacterium variabile) to convert GFR into insect biomass and organic fertilizer. About 85.5% GA3 in the GFR was removed under the following optimized solid-state fermentation conditions: 60% GFR, 40% rice straw powder, pH 8.5 and 6 days at 26 °C. A total of 371 g housefly larvae meal and 2,064 g digested residue were bio-converted from 3,500 g raw GFR mixture contaning1, 400 g rice straw in the unit of (calculated) dry matter. HFL meal derived from GFR contained 56.4% protein, 21.6% fat, and several essential amino acids, suggesting that it is a potential alternative animal feed protein source. Additionally, the digested GFR could be utilized as an organic fertilizer with a content of 3.2% total nitrogen, 2.0% inorganic phosphorus, 1.3% potassium and 91.5% organic matter. This novel GFR bio-conversion method can mitigate potential environmental pollution and recycle the waste resources.


Assuntos
Ração Animal , Corynebacterium/fisiologia , Fermentação/fisiologia , Fertilizantes/microbiologia , Giberelinas/metabolismo , Moscas Domésticas/crescimento & desenvolvimento , Gerenciamento de Resíduos/métodos , Animais , Biomassa , Moscas Domésticas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA