RESUMO
China's growing demand for bulk chemicals and concerns regarding energy security are scaling up coal-to-olefins (CTO) production. Three generations of independent dimethyl ether/methanol-to-olefins technologies have been successively launched with greatly improved production efficiencies. However, to date, widespread concerns regarding the intensive environmental impacts and potential economic risks have not been addressed in the context of this industrialization. Here we show that, through the technological progress from the first to the third generation, life cycle energy consumption, water consumption, and carbon emissions can be reduced to 119.5 GJ/t, 27.6 t/t, and 9.1 t CO2-eq/t, respectively, and human health damage, ecosystem quality damage, and resource scarcity impacts can be decreased by 40.5 %, 50.1 %, and 16.4 %, respectively. This is accompanied by an excellent performance in terms of production cost, net present value, and internal return rate at 792.5 USD/t, 173.4 USD/t, and 19.4 %, respectively. Substantial environmental and economic benefits can be gained by coupling renewables in the form of using green hydrogen from solar and wind power to synthesize methanol. Particularly, life cycle carbon emissions and resource scarcity impacts are reduced by 23.4 % and 22.4 %, respectively, exceeding the reduction in technological progress. However, coupling renewables increases the life cycle energy consumption to 154.5 GJ/t, counteracting the benefits of technological progress. Our results highlight the importance of technological progress and coupled renewables for enhancing the sustainability of the CTO industry.
Assuntos
Alcenos , Carvão Mineral , Humanos , Ecossistema , Metanol , Desenvolvimento Econômico , Carbono/análise , Dióxido de Carbono/análise , ChinaRESUMO
This review summarizes how the carbon cycle occurs and how to reduce CO2 emissions in highly efficient carbon utilization from the most abundant carbon source, coal. Nowadays, more and more attention has been paid to CO2 emissions and its myriad of sources. Much research has been undertaken on fossil energy and renewable energy and current existing problems, challenges and opportunities in controlling and reducing CO2 emission with technologies of CO2 capture, utilization, and storage. The coal chemical industry is a crucial area in the (CO2 value chain) Carbon Cycle. The realization of clean and effective conversion of coal resources, improving the utilization and efficiency of resources, whilst reducing CO2 emissions is a key area for further development and investigation by the coal chemical industry. Under a weak carbon mitigation policy, the value and price of products from coal conversion are suggested in the carbon cycle.
RESUMO
Flue gas from coal combustion contains significant amounts of volatile selenium (Se). The capture of Se in the flue gas desulfurization (FGD) scrubber unit has resulted in a generation of metal-laden residues. It is important to determine Se speciation to understand the environmental impact of its disposal. A simple method has been developed for selective inorganic Se(IV), Se(VI) and organic Se determination in the liquid-phase FGD residues by hydride generation atomic fluorescence spectrometry (AFS). It has been determined that Se(IV), Se(VI) and organic Se can be accurately determined with detection limits (DL) of 0.05, 0.06 and 0.06 microg/L, respectively. The accuracy of the proposed method was evaluated by analyzing the certified reference material, NIST CRM 1632c, and also by analyzing spiked tap-water samples. Analysis indicates that the concentration of Se is high in FGD liquid residues and primarily exists in a reduced state as selenite (Se(IV)). The toxicity of Se(IV) is the strongest of all Se species. Flue gas desulfurization residues pose a serious environmental risk.
Assuntos
Gases/química , Selênio/química , Enxofre/química , Boroidretos/química , Ácido Nítrico/química , Eliminação de Resíduos Líquidos , Abastecimento de Água/análiseRESUMO
This study attempted to investigate the effect of impregnation sequence of the Pd/Ce/γ-Al2O3 sorbents on Hg0 removal. To this end, five kinds of sorbents were prepared and tested in simulated coal derived fuel gas (N2-H2-CO-H2S-Hg), including Pd/γ-Al2O3, Ce/γ-Al2O3 and three kinds of Pd-based sorbents with Ce impregnation on γ-Al2O3 substrate. The tests were conducted at 250 and 300 °C respectively. According to the results, bimetallic Ce-Pd/γ-Al2O3 sorbent prepared by simultaneously impregnating Pd and Ce showed much higher and more stable removal efficiency of Hg0 than the other three kinds of sorbents. The Hg0 removal efficiency of Ce-Pd/γ-Al2O3 sorbent reached above 98% within 480 min at 250 °C and 91% within 200 min at 300 °C. Characterization results indicated that the sorbent Ce-Pd/γ-Al2O3 prepared by the co-impregnation method had bigger specific surface area (216.6 m2/g) than the other three kinds of Pd-based sorbents. The content Pd and Ce on the sorbent Ce-Pd/γ-Al2O3 surface is 0.21% and 0.61%, which proved higher than that of the other three kinds of Pd-based sorbents, and observation from STEM-XEDS maps showed it demonstrated the highest dispersion. It is found that Ce is likely to promote the dispersion of Pd on the support surface during the preparation of the sorbent under the co-impregnation method. Meanwhile, Ce enhanced the H2S resistance of the sorbent. Thereby, Ce-Pd/γ-Al2O3 sorbent is found to have the optimal performance of mercury removal. In this study, the Hg0 removal mechanism of the Pd/Ce/γ-Al2O3 sorbents in the simulated coal derived fuel gas was also elaborated.
Assuntos
Poluentes Atmosféricos/química , Carvão Mineral/análise , Combustíveis Fósseis/análise , Mercúrio/química , Adsorção , Gases/química , Mercúrio/análiseRESUMO
Using naproxen as model drug, the formulation of microemulsion vehicle for transdermal delivery was optimized by genetic algorithm. The ranges of microemulsion composed of Tween 80, IPM, alcohol and water, were defined through construction of the pseudo-ternary phase diagrams. Systematic model microemulsions containing naproxen 1.12% were prepared by a three-factor, three-level center design method, and their diffusion studies via excised rabbit skin were performed. Using the quadratic regression model of steady-state permeation rate (Js) of naproxen as objective function, the consequence of center design experiment was optimized by genetic algorithm, and the formulation of microemulsion with highest permeation rate for naproxen was screened. The optimum formulation was composed of 21.41% Tween 80, 15.17% alcohol, 4.14% IPM, and 59.28% water, and the anticipated Js was 183.57 microg x cm(-2) x h(-1). The results of back substitution test showed the steady-state permeation rate of naproxen microemulsion prepared according to optimum formulation was 189.43 microg x cm(-2) x h(-1), which was higher than anticipated value. This result demonstrated optimizing formulation of microemulsion for transdermal delivery by genetic algorithm is feasible, reliable and reasonable.
Assuntos
Algoritmos , Naproxeno/farmacocinética , Absorção Cutânea , Administração Cutânea , Animais , Modelos Genéticos , Naproxeno/administração & dosagem , CoelhosRESUMO
Jurassic coal in Northwest China is rich in resources and it is a necessary premise to reveal the chemical structure characteristics of the coal macerals in this region before the coal is put into reasonable and efficient use. Micro-FTIR technique was used to investigate the chemical composition and structures of vitrinite semifusinite and fusinite from Jurassic coal in Northwestern China. The results show that vitrinite and semifusinite have more aliphatic hydrogen, but fusinite has more aromatic hydrogen and C=O structure. The aliphatic hydrogen in semifusinite is higher than that in fusinite and it is this structure characteristic of semifusinite that led to the richer inertinite but higher reactivity of the Northwestern China coal. Not only vitrinite but also semifusinite and fusinite with weaker reducibility have less aliphatic hydrogen and more C=O structures than those with stronger reducibility. The different intensity of oxidation in the process of coalification is one of the causes that led to different type of reducibility.
RESUMO
The catalyst of Fe-Mo/ZSM-5 has been found to be more active than Fe-ZSM-5 and Mo/ZSM-5 separately for selective catalytic reduction (SCR) of nitric oxide (NO) with NH3. The kinetics of the SCR reaction in the presence of O2 was studied in this work. The results showed that the observed reaction orders were 0.74-0.99, 0.01-0.13, and 0 for NO, O2 and NH3 at 350-450 degrees C, respectively. And the apparent activation energy of the SCR was 65 kJ/mol on the Fe-Mo/ZSM-5 catalyst. The SCR mechanism was also deduced. Adsorbed NO species can react directly with adsorbed ammonia species on the active sites to form N2 and H2O. Gaseous 02 might serve as a reoxidizing agent for the active sites that have undergone reduction in the SCR process. It is also important to note that a certain amount of NO was decomposed directly over the Fe-Mo/ZSM-5 catalyst in the absence of NH3.
Assuntos
Poluentes Atmosféricos/química , Amônia/química , Ferro/química , Molibdênio/química , Óxido Nítrico/química , Zeolitas/química , Poluição do Ar/prevenção & controle , Catálise , Cinética , Modelos Químicos , Oxirredução , Oxigênio/químicaRESUMO
The main factors that affect the large specific surface area (SSA) of the activated carbon from agricultural waste corn cobs were studied by chemically activated method with solution of KOH and soap which acted as surfactant. The experiment showed that not only the activation temperature, activation time and the mass ratio of KOH to the carbonized material, but also the activated methods using activator obviously influenced the SSA of activated carbon. The experimental operating conditions were as follows: the carbonized temperature being 450 degrees C and keeping time being 4 h using N2 as protective gas; the activation temperature being 850 degrees C and holding time being 1.2 h; the mass ratio of KOH to carbonized material being 4.0; the time of soaking carbonized material in the solution of KOH and soap being 30 min. Under the optimal conditions, the SSA of activated carbon from corn cobs reached 2700 m2/g. And the addition of the soap as surfactant may shorten the soaking time. The structure of the activated carbon prepared had narrow distribution of pore size and the micro-pores accounted for 78%. The advantages of the method described were easy and feasible.
Assuntos
Carbono/química , Zea mays/química , Temperatura Alta , Hidróxidos , Compostos de Potássio , Propriedades de Superfície , Fatores de TempoRESUMO
Polycyclic aromatic hydrocarbons (PAHs) are major environmental pollutants. They have attracted considerable attention due to their severe potential carcinogenic, mutagenic and genotoxic effects on human health. In this study, five different rank coals from China were pyrolyzed using pyro-probe CDS 5250 and the release behavior of 16 PAHs under different pyrolysis conditions were studied by Gas Chromatography-Mass Spectrometer (GC-MS). The structural characteristics of the five coals were determined by Cross-Polarization/Magic Angle Spinning Carbon-13 Nuclear Magnetic Resonance (CP/MAS (13)C NMR) spectroscopy, and then the factors influencing the formation of PAHs during coal pyrolysis were discussed together with the coal structural data. It was shown that the amount of PAHs generated during coal pyrolysis was largely related to coal rank and followed the order of medium metamorphic coal > low metamorphic coal > high metamorphic coal. The amount of total PAHs varied as the temperature was increased from 400 °C to 1200 °C, which showed a trend of first increasing and then decreasing, with the maximum value at 800 °C. Moreover, the species of PAHs released varied with pyrolysis temperatures. When the temperature was lower than 800 °C, the small ring PAHs were the most abundant, while the proportion of heavy rings increased at higher temperature. The results indicate that the formation of PAHs during coal pyrolysis depends on the structure of the coal. The species and amounts of PAHs generated during coal pyrolysis are closely related to the contents of protonated aromatic carbons and bridging ring junction aromatic carbons present in the coal structure.
Assuntos
Carvão Mineral/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Carbono/química , Carcinógenos/análise , China , Cromatografia Gasosa-Espectrometria de Massas , Temperatura Alta , Substâncias Macromoleculares , Espectroscopia de Ressonância MagnéticaRESUMO
Mo/ZSM-5 catalysts with different Mo content were prepared by impregnation method. The effect of Mo content on the property of Mo/ZSM-5 catalysts and their performance for selective catalytic reduction(SCR) of NO with ammonia was investigated by XRD, ICP, XPS and NO-TPD respectively. The results showed that the catalytic activity of Mo/ZSM-5 for SCR of NO is strongly influenced by the Mo loading in HZSM-5 zeolites. The NOx conversion reached the highest value of 64.2% at 375 degrees C when Mo content is about 10.9%, and the temperatures at which the maximum of NOx conversion obtained were declined with the increase of Mo content. From XRD results, it can be seen that it exhibits the distinct interaction between Mo and HZSM-5 when Mo content is about 10.9% . This may result in a suitable phase structure in Mo/ZSM-5 catalyst, which is advantageous for NO reduction. XPS and NO-TPD results also showed that the catalytic activity of Mo/ZSM-5 may be related to the Mo percent on the surface.
Assuntos
Poluição do Ar/prevenção & controle , Molibdênio/química , Óxido Nítrico/química , Emissões de Veículos/análise , Zeolitas/química , Amônia/química , Catálise , Temperatura , Difração de Raios XRESUMO
The powder of the agricultural waste corn cob was pyrolyzed in a tube-typed stainless steel reactor of 200 ml volume under N2 atmosphere. The compositions of the gases and liquid obtained at different pyrolytic temperatures below 600 degrees C at the heating rate of 30 K/min were analyzed. With the increment of the pyrolytic temperature, the yields of the solid and the liquid products were decreased, but the yield of gas products was increased. The liquid products were approximately 34-40.96% (wt%), the gas products were 27-40.96% (wt%) and the solid products 23.6-31.6% (wt%). There were less changes for the yields of these products above 600 degrees C. The gas products were analyzed by gas chromatography (GC) as CO2, CO, H2, CH4, C2H4, C3H6, C3H8, etc. When the temperature was 350-400 degrees C, the gases had CO2 and CO 80-95% (v/v). When the temperature increased continuously, yields of H2, CH4, C2H4, C3H6 and C3H8 gradually increased. The liquid products were identified by GC-MS as phenols, 2-furanmethanol, 2-cyclopentanedione, etc. The Fourier transform infra-red spectrophotometer (FT-IR) analysis of the liquid product showed a strong -OH group absorption peak. Differential thermogravimetric analysis (DTG) showed that thermal decomposition process involves two steps. The heating rate affects not only the activation energy of the decomposition reaction, but also the path of the reaction. With the increment of the heating rate, the maximum rate temperature of the decomposition reaction was shifted to a higher temperature, and the order and activation energy of the total decomposition reaction were decreasing.
Assuntos
Incineração , Eliminação de Resíduos/métodos , Temperatura , Resíduos/análise , Zea mays/química , China , Cromatografia Gasosa , Cromatografia Gasosa-Espectrometria de Massas , Gases/análise , Compostos Orgânicos/análise , Espectrofotometria Infravermelho , TermogravimetriaRESUMO
Hazardous organic pollutants such as polycyclic aromatic hydrocarbons (PAHs) generated during the course of coal pyrolysis are highly mutagenic and carcinogenic. The relation between the amount of PAHs from the raw coal and that generated from coal pyrolysis were studied. Firstly, three Chinese coals from Huolinhe, Ximeng and Fenxi were respectively extracted by dichloromethane, and then, online pyrolysis analysis of the raw coals, their extraction residues and extracts were carried out respectively by PY (Pyro-probe CDS 5250)-GC-MS. The experimental results showed that the PAHs generated from the Huolinhe, Ximeng and Fenxi coals in the course of their pyrolysis was 523, 327 and 1707 µg/g, respectively, which were much higher than the free PAHs extracted from their corresponding raw coals. The PAHs in the raw coals were dominated by 4,5-ring PAHs, while those generated from the coal pyrolysis were dominated by lower-ring (2,3-rings) PAHs. A lot of important information about the generation of PAHs from residue pyrolysis was also included in the paper which indicated that the PAHs were mainly from complex chemical reactions of the coal pyrolysis, and PAHs were more likely to be generated from the residue pyrolysis due to the increased pores that appeared on the coal surface during the course of extraction operation.