Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Arch Virol ; 164(9): 2385-2388, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31209596

RESUMO

The discovery and analysis of pathogens carried by non-human primates are important for understanding zoonotic infections in humans. We identified a highly divergent astrovirus (AstV) from fecal matter from a rhesus monkey in China, which has been tentatively named "monkey-feces-associated AstV" (MkAstV). The full-length genome of MkAstV was determined to be 7377 nt in length. It exhibits the standard genomic AstV organization of three open reading frames (ORFs) and is most closely related to duck AstV (28%, 49%, and 35% amino acid sequence identity in ORF1a, ORF1b, and ORF2, respectively). Coincidentally, while this report was being prepared, an astrovirus sequence from Hainan black-spectacled toad became available in the GenBank database, showing 95%, 94% and 92% aa sequence identity in ORF1a, ORF1b and ORF2, respectively, to the corresponding ORFs of MkAstV. Phylogenetic analysis of ORF1a, ORF1b, and ORF2 indicated that MkAstV and the amphibian-related astroviruses formed an independent cluster in the genus Avastrovirus. The host of MkAstV remains unknown. Epidemiological and serological studies of this novel virus should be undertaken in primates, including humans.


Assuntos
Astroviridae/isolamento & purificação , Fezes/virologia , Macaca mulatta/virologia , Sequência de Aminoácidos , Animais , Astroviridae/classificação , Astroviridae/genética , China , Genoma Viral , Fases de Leitura Aberta , Filogenia , Alinhamento de Sequência , Proteínas Virais/genética
2.
J Gen Virol ; 98(4): 612-623, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28100306

RESUMO

With advances in viral surveillance and next-generation sequencing, highly diverse novel astroviruses (AstVs) and different animal hosts had been discovered in recent years. However, the existence of AstVs in marmots had yet to be shown. Here, we identified two highly divergent strains of AstVs (tentatively named Qinghai Himalayanmarmot AstVs, HHMAstV1 and HHMAstV2), by viral metagenomic analysis in liver tissues isolated from wild Marmota himalayana in China. Overall, 12 of 99 (12.1 %) M. himalayana faecal samples were positive for the presence of genetically diverse AstVs, while only HHMAstV1 and HHMAstV2 were identified in 300 liver samples. The complete genomic sequences of HHMAstV1 and HHMAstV2 were 6681 and 6610 nt in length, respectively, with the typical genomic organization of AstVs. Analysis of the complete ORF 2 sequence showed that these novel AstVs are most closely related to the rabbit AstV, mamastrovirus 23 (with 31.0 and 48.0 % shared amino acid identity, respectively). Phylogenetic analysis of the amino acid sequences of ORF1a, ORF1b and ORF2 indicated that HHMAstV1 and HHMAstV2 form two distinct clusters among the mamastroviruses, and may share a common ancestor with the rabbit-specific mamastrovirus 23. These results suggest that HHMAstV1 and HHMAstV2 are two novel species of the genus Mamastrovirus in the Astroviridae. The remarkable diversity of these novel AstVs will contribute to a greater understanding of the evolution and ecology of AstVs, although additional studies will be needed to understand the clinical significance of these novel AstVs in marmots, as well as in humans.


Assuntos
Infecções por Astroviridae/veterinária , Astroviridae/classificação , Astroviridae/isolamento & purificação , Marmota/virologia , Animais , Astroviridae/genética , Infecções por Astroviridae/virologia , China , Análise por Conglomerados , Fezes/virologia , Ordem dos Genes , Genoma Viral , Fígado/virologia , Metagenômica , Filogenia , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Sintenia
3.
Sci Rep ; 6: 28526, 2016 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-27329349

RESUMO

Recent studies of Enterovirus (EV) in nonhuman primates (NHPs), which could act as a source of future emerging human viral diseases, have boosted interest in the search for novel EVs. Here, a highly divergent strain of EV, tentatively named SEV-gx, was identified by viral metagenomic analysis from stool samples of rhesus macaques in China. In total, 27 of 280 (9.6%) faecal samples from rhesus macaques were positive for SEV-gx. Its complete genomic sequence is 7,367 nucleotide (nt). Genomic analyses showed that it has a standard genomic organisation for EVs, being more closely related to EV-J strains (approximately 54.0%, 43.0-44.1%, 52.3-55.2%, 61.1-62.7% and 64.0% amino acids identity in polyprotein, P1, P2 and P3 and combined 2C/3CD regions, respectively). It was also shown to have genome characteristics typical of EVs. Phylogenetic analysis of P1, 2C and 3CD aa indicated that SEV-gx can be classified as a distinct cluster in the EVs. All of this evidence demonstrates SEV-gx is a novel species (tentatively named EV-K) in the EV genus, which contributes to our understanding of the genetic diversity and evolution of EVs. Further studies are needed to investigate the potential pathogenicity of SEV-gx in NHPs and humans.


Assuntos
Infecções por Enterovirus/veterinária , Enterovirus/classificação , Macaca mulatta/virologia , Doenças dos Macacos/virologia , Animais , China , Enterovirus/genética , Enterovirus/isolamento & purificação , Infecções por Enterovirus/virologia , Evolução Molecular , Fezes/virologia , Variação Genética , Genoma Viral , Humanos , Metagenômica , Conformação de Ácido Nucleico , Filogenia , RNA Viral/química , RNA Viral/genética , Análise de Sequência de RNA , Proteínas Estruturais Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA