Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Inorg Chem ; 63(4): 2157-2173, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38206809

RESUMO

It is an important strategy to design composite materials with a special microstructure and a tunable electronic structure through structural compatibility. In this work, a novel hexagonal/cubic ZnIn2S4 polymorphic heterophase junction with a three-dimensional multihierarchical structure is successfully constructed by in situ growth of hexagonal ZnIn2S4 nanosheets on the surface of cubic ZnIn2S4 flower-like microspheres prepared by topological chemical synthesis. On the one hand, the multihierarchical architecture provides large specific surface area, abundant active sites, and excellent light trapping capability. On the other hand, the construction of a direct S-scheme heterophase junction enables the formation of a special charge-transfer channel under the force of a built-in electric field, which not only improves the separation efficiency of carriers but also ensures the stronger reaction activity of charges. The prepared ZnIn2S4 heterophase junction composite photocatalyst exhibits greatly boosted photocatalytic efficiency in rhodamine B degradation, hexavalent chromium reduction, and water splitting for hydrogen production, which are 12.3, 6.5, and 3.1 times higher than that of pure hexagonal ZnIn2S4 and 8.1, 5.1, and 2.3 times higher than that of pure cubic ZnIn2S4, respectively, demonstrating its significant potential for applications in energy and environmental fields.

2.
Inorg Chem ; 63(41): 19309-19321, 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39350527

RESUMO

Photocatalytic CO2 reduction technology has engaged significant attention due to its high efficiency, high selectivity, and environmental friendliness. However, its application is severely restrained by issues such as low separation efficiency of photogenerated carriers and a limited light absorption range. This work proposes an innovative MgCr2O4/MgIn2S4 magnesium-based spinel/spinel heterostructure photocatalyst to improve the photocatalytic CO2 reduction efficiency through the synergistic contributions of S-scheme heterojunction and photothermal effect. On the one hand, the unique S-scheme charge transfer mechanism enables the effective separation of photogenerated carriers. On the other hand, the photothermal effect allows an accelerated charge migration by increasing the reaction center temperature. Moreover, the abundant oxygen vacancies serve as electron traps and CO2 adsorption sites, unifying reaction and adsorption sites and substantially improving catalytic efficiency. Under UV-vis and UV-vis-NIR illumination, the average CO yields of the MgCr2O4/MgIn2S4 composite are 8.03 and 15.62 µmol g-1 h-1, respectively, greatly higher than those of pure MgCr2O4 and MgIn2S4 samples. Furthermore, the fabricated photocatalyst demonstrates excellent performance and structure stability. Therefore, this work may offer a new strategy for designing efficient and stable photocatalysts.

3.
Inorg Chem ; 62(1): 543-556, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36534974

RESUMO

The widespread application of dyes and heavy metals causes increasing environmental pollution. One effective way to mitigate environmental pollution is to use semiconductor photocatalysts for redox purification of pollutants. Heterostructured photocatalysts can reduce the electron-hole recombination rate and improve light utilization. In this work, a novel SnO2/In3-xS4 composite with oxygen vacancy defect-mediated Z-scheme heterostructure is constructed for the first time by a one-pot method, in which SnO2 ultrasmall nanocrystals are decorated on nanopetals of flower-like In3-xS4. Material analyses show that the as-built three-dimensional hierarchical architecture is able to essentially increase the specific surface area and thus the active sites of the products. More importantly, the formation of Z-scheme heterojunction between the oxygen vacancy-induced SnO2 defect level and the In3-xS4 band structure not only promotes the separation of photogenerated charges but also makes them more reactive. Through the optimization of the composition ratio between the two phases, the visible-light-driven photocatalytic reaction rates of rhodamine B degradation and Cr(VI) reduction for the developed SnO2/In3-xS4 composite photocatalyst are 12.8 and 6.3 times of bare In3-xS4 and 32.0 and 76.0 times of bare SnO2, respectively. This work should provide a promising implication for designing new high-performance composite photocatalysts.

4.
Inorg Chem ; 62(8): 3646-3659, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36765458

RESUMO

Photocatalysis has long been considered a promising technology in green energy and environmental remediation. Since the poor performance of single components greatly limits the practical applications, the construction of heterostructures has become one of the most important technical means to improve the photocatalytic activity. In this work, based on the synthesis of oxygen-vacancy-rich ZnCr2O4 nanocrystals, ZnCr2O4/ZnIn2S4 composites are prepared via a low-temperature in situ growth, and the oxygen-vacancy-induced Z-scheme heterojunction is successfully constructed. The unique core-shell structure offers a tight interfacial contact, increases the specific surface area, and promotes the rapid charge transfer. Meanwhile, the oxygen-vacancy defect level not only enables wide-bandgap ZnCr2O4 to be excited by visible light enhancing the light absorption, but also provides necessary conditions for the construction of Z-scheme heterojunctions promoting charge separation and migration and allowing more reactive charges. The reaction rates of visible-light-driven photocatalytic hydrogen production (3.421 mmol g-1 h-1), hexavalent chromium reduction (0.124 min-1), and methyl orange degradation (0.067 min-1) of the composite reach 3.6, 6.5, and 8.4 times those of pure ZnIn2S4, and 15.8, 41.3, and 67.0 times those of pure ZnCr2O4, respectively. This work presents a novel option for constructing high-performance photocatalysts.

5.
J Colloid Interface Sci ; 648: 181-192, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37301143

RESUMO

To develop ideal alternatives to noble metal catalysts, transition metal catalysts supported on graphene have been receiving extensive attention in the field of electrochemical energy. In this work, using graphene oxide (GO) and nickel formate as precursors, Ni/NiO synergistic nanoparticles with regulable composition are anchored on reduced graphene oxide (RGO) to prepare Ni/NiO/RGO composite electrocatalysts through in-situ autoredox. Thanks to the synergistic effect of Ni3+ active sites and Ni electron donors, the as-prepared Ni/NiO/RGO catalysts exhibit efficient electrocatalytic oxygen evolution performance in 1.0 M KOH electrolyte. The optimal sample has an overpotential of only 275 mV at a current density of 10 mA cm-2 and a small Tafel slope of 90 mV dec-1, which are very comparable to those of commercial RuO2 catalyst. Additionally, the catalytic capacity and structure remain stable after 2000 cyclic voltammetry cycles. For the electrolytic cell assembled with the best-performing sample as anode and commercial Pt/C as cathode, the current density can reach 10 mA cm-2 at a low potential of 1.57 V and remains stable after 30 h of continuous work. It would be expected that the as-developed Ni/NiO/RGO catalyst with high activity should have broad application prospects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA