Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
RNA Biol ; 19(1): 290-304, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35130112

RESUMO

Simultaneous measurement of multiple modalities in single-cell analysis, represented by CITE-seq, is a promising approach to link transcriptional changes to cellular phenotype and function, requiring new computational methods to define cellular subtypes and states based on multiple data types. Here, we design a flexible single-cell multimodal analysis framework, called CITEMO, to integrate the transcriptome and antibody-derived tags (ADT) data to capture cell heterogeneity from the multi omics perspective. CITEMO uses Principal Component Analysis (PCA) to obtain a low-dimensional representation of the transcriptome and ADT, respectively, and then employs PCA again to integrate these low-dimensional multimodal data for downstream analysis. To investigate the effectiveness of the CITEMO framework, we apply CITEMO to analyse the cell subtypes of Cord Blood Mononuclear Cells (CBMC) samples. Results show that the CITEMO framework can comprehensively analyse single-cell multimodal samples and accurately identify cell subtypes. Besides, we find some specific immune cells that co-express multiple ADT markers. To better describe the co-expression phenomenon, we introduce the co-expression entropy to measure the heterogeneous distribution of the ADT combinations. To further validate the robustness of the CITEMO framework, we analyse Human Bone Marrow Cell (HBMC) samples and identify different states of the same cell type. CITEMO has an excellent performance in identifying cell subtypes and states for multimodal omics data. We suggest that the flexible design idea of CITEMO can be an inspiration for other single-cell multimodal tasks. The complete source code and dataset of the CITEMO framework can be obtained from https://github.com/studentiz/CITEMO.


Assuntos
Biologia Computacional/métodos , Heterogeneidade Genética , Sistema Imunitário/citologia , Sistema Imunitário/metabolismo , Análise de Célula Única/métodos , Software , Linhagem da Célula/genética , Regulação da Expressão Gênica , Genômica/métodos , Humanos , Sistema Imunitário/imunologia
2.
Nucleic Acids Res ; 45(D1): D888-D895, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-27899673

RESUMO

The human disease methylation database (DiseaseMeth, http://bioinfo.hrbmu.edu.cn/diseasemeth/) is an interactive database that aims to present the most complete collection and annotation of aberrant DNA methylation in human diseases, especially various cancers. Recently, the high-throughput microarray and sequencing technologies have promoted the production of methylome data that contain comprehensive knowledge of human diseases. In this DiseaseMeth update, we have increased the number of samples from 3610 to 32 701, the number of diseases from 72 to 88 and the disease-gene associations from 216 201 to 679 602. DiseaseMeth version 2.0 provides an expanded comprehensive list of disease-gene associations based on manual curation from experimental studies and computational identification from high-throughput methylome data. Besides the data expansion, we also updated the search engine and visualization tools. In particular, we enhanced the differential analysis tools, which now enable online automated identification of DNA methylation abnormalities in human disease in a case-control or disease-disease manner. To facilitate further mining of the disease methylome, three new web tools were developed for cluster analysis, functional annotation and survival analysis. DiseaseMeth version 2.0 should be a useful resource platform for further understanding the molecular mechanisms of human diseases.


Assuntos
Biologia Computacional/métodos , Metilação de DNA , Bases de Dados Genéticas , Ferramenta de Busca , Epigenômica/métodos , Perfilação da Expressão Gênica/métodos , Estudos de Associação Genética/métodos , Humanos , Software , Navegador
4.
Genome Med ; 14(1): 16, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35172892

RESUMO

BACKGROUND: Understanding the host genetic architecture and viral immunity contributes to the development of effective vaccines and therapeutics for controlling the COVID-19 pandemic. Alterations of immune responses in peripheral blood mononuclear cells play a crucial role in the detrimental progression of COVID-19. However, the effects of host genetic factors on immune responses for severe COVID-19 remain largely unknown. METHODS: We constructed a computational framework to characterize the host genetics that influence immune cell subpopulations for severe COVID-19 by integrating GWAS summary statistics (N = 969,689 samples) with four independent scRNA-seq datasets containing healthy controls and patients with mild, moderate, and severe symptom (N = 606,534 cells). We collected 10 predefined gene sets including inflammatory and cytokine genes to calculate cell state score for evaluating the immunological features of individual immune cells. RESULTS: We found that 34 risk genes were significantly associated with severe COVID-19, and the number of highly expressed genes increased with the severity of COVID-19. Three cell subtypes that are CD16+monocytes, megakaryocytes, and memory CD8+T cells were significantly enriched by COVID-19-related genetic association signals. Notably, three causal risk genes of CCR1, CXCR6, and ABO were highly expressed in these three cell types, respectively. CCR1+CD16+monocytes and ABO+ megakaryocytes with significantly up-regulated genes, including S100A12, S100A8, S100A9, and IFITM1, confer higher risk to the dysregulated immune response among severe patients. CXCR6+ memory CD8+ T cells exhibit a notable polyfunctionality including elevation of proliferation, migration, and chemotaxis. Moreover, we observed an increase in cell-cell interactions of both CCR1+ CD16+monocytes and CXCR6+ memory CD8+T cells in severe patients compared to normal controls among both PBMCs and lung tissues. The enhanced interactions of CXCR6+ memory CD8+T cells with epithelial cells facilitate the recruitment of this specific population of T cells to airways, promoting CD8+T cell-mediated immunity against COVID-19 infection. CONCLUSIONS: We uncover a major genetics-modulated immunological shift between mild and severe infection, including an elevated expression of genetics-risk genes, increase in inflammatory cytokines, and of functional immune cell subsets aggravating disease severity, which provides novel insights into parsing the host genetic determinants that influence peripheral immune cells in severe COVID-19.


Assuntos
Linfócitos T CD8-Positivos/virologia , COVID-19/genética , COVID-19/patologia , Monócitos/virologia , Análise de Célula Única/métodos , COVID-19/imunologia , Biologia Computacional/métodos , Proteínas Ligadas por GPI/metabolismo , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Células Progenitoras de Megacariócitos/imunologia , Células Progenitoras de Megacariócitos/virologia , Monócitos/metabolismo , Locos de Características Quantitativas , Receptores CCR1/imunologia , Receptores CCR1/metabolismo , Receptores CXCR6/imunologia , Receptores CXCR6/metabolismo , Receptores de IgG/metabolismo , Análise de Sequência de RNA , Índice de Gravidade de Doença
5.
Cell Rep ; 31(9): 107723, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32492431

RESUMO

The advent of base editors (BEs) holds great potential for correcting pathogenic-related point mutations to treat relevant diseases. However, Cas9 nickase (nCas9)-derived BEs lead to DNA double-strand breaks, which can trigger unwanted DNA damage response (DDR). Here, we show that the original version of catalytically dead Cas12a (dCas12a)-conjugated BEs induce a basal level of DNA breaks and minimally activate DDR proteins, including H2AX, ATM, ATR, and p53. By fusing dCas12a with engineered human apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3A (APOBEC3A), we further develop the BEACON (base editing induced by human APOBEC3A and Cas12a without DNA break) system to achieve enhanced deamination efficiency and editing specificity. Efficient C-to-T editing is achieved by BEACON in mammalian cells at levels comparable to AncBE4max, with only low levels of DDR and minimal RNA off-target mutations. Importantly, BEACON induces in vivo base editing in mouse embryos, and targeted C-to-T conversions are detected in F0 mice.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas Associadas a CRISPR/metabolismo , Dano ao DNA , Endodesoxirribonucleases/metabolismo , Edição de Genes/métodos , 17-Hidroxiesteroide Desidrogenases/genética , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Bactérias/genética , Proteínas Associadas a CRISPR/genética , Citidina/metabolismo , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , Replicação do DNA , Desaminação , Endodesoxirribonucleases/genética , Feminino , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Fosforilação , Proteínas/genética , Proteínas/metabolismo , Timidina/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Ubiquitinas/metabolismo
6.
Genome Biol ; 20(1): 218, 2019 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-31647030

RESUMO

A variety of base editors have been developed to achieve C-to-T editing in different genomic contexts. Here, we compare a panel of five base editors on their C-to-T editing efficiencies and product purity at commonly editable sites, including some human pathogenic C-to-T mutations. We further profile the accessibilities of 20 base editors to all possible pathogenic mutations in silico. Finally, we build the BEable-GPS (Base Editable prediction of Global Pathogenic SNVs) database for users to select proper base editors to model or correct disease-related mutations. The in vivo comparison and in silico profiling catalog the availability of base editors and their broad applications in biomedical studies.


Assuntos
Desaminases APOBEC , Sistemas CRISPR-Cas , Edição de Genes/métodos , Genômica/métodos , Mutação Puntual , Linhagem Celular Tumoral , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA