Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 621(7977): 75-81, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37673990

RESUMO

Benefiting from high energy density (2,600 Wh kg-1) and low cost, lithium-sulfur (Li-S) batteries are considered promising candidates for advanced energy-storage systems1-4. Despite tremendous efforts in suppressing the long-standing shuttle effect of lithium polysulfides5-7, understanding of the interfacial reactions of lithium polysulfides at the nanoscale remains elusive. This is mainly because of the limitations of in situ characterization tools in tracing the liquid-solid conversion of unstable lithium polysulfides at high temporal-spatial resolution8-10. There is an urgent need to understand the coupled phenomena inside Li-S batteries, specifically, the dynamic distribution, aggregation, deposition and dissolution of lithium polysulfides. Here, by using in situ liquid-cell electrochemical transmission electron microscopy, we directly visualized the transformation of lithium polysulfides over electrode surfaces at the atomic scale. Notably, an unexpected gathering-induced collective charge transfer of lithium polysulfides was captured on the nanocluster active-centre-immobilized surface. It further induced an instantaneous deposition of nonequilibrium Li2S nanocrystals from the dense liquid phase of lithium polysulfides. Without mediation of active centres, the reactions followed a classical single-molecule pathway, lithium polysulfides transforming into Li2S2 and Li2S step by step. Molecular dynamics simulations indicated that the long-range electrostatic interaction between active centres and lithium polysulfides promoted the formation of a dense phase consisting of Li+ and Sn2- (2 < n ≤ 6), and the collective charge transfer in the dense phase was further verified by ab initio molecular dynamics simulations. The collective interfacial reaction pathway unveils a new transformation mechanism and deepens the fundamental understanding of Li-S batteries.

2.
Chem Soc Rev ; 53(10): 5264-5290, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38619389

RESUMO

The energy storage and vehicle industries are heavily investing in advancing all-solid-state batteries to overcome critical limitations in existing liquid electrolyte-based lithium-ion batteries, specifically focusing on mitigating fire hazards and improving energy density. All-solid-state lithium-sulfur batteries (ASSLSBs), featuring earth-abundant sulfur cathodes, high-capacity metallic lithium anodes, and non-flammable solid electrolytes, hold significant promise. Despite these appealing advantages, persistent challenges like sluggish sulfur redox kinetics, lithium metal failure, solid electrolyte degradation, and manufacturing complexities hinder their practical use. To facilitate the transition of these technologies to an industrial scale, bridging the gap between fundamental scientific research and applied R&D activities is crucial. Our review will address the inherent challenges in cell chemistries within ASSLSBs, explore advanced characterization techniques, and delve into innovative cell structure designs. Furthermore, we will provide an overview of the recent trends in R&D and investment activities from both academia and industry. Building on the fundamental understandings and significant progress that has been made thus far, our objective is to motivate the battery community to advance ASSLSBs in a practical direction and propel the industrialized process.

3.
Small ; 20(12): e2306868, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37946620

RESUMO

The inhomogeneous nucleation and growth of Li dendrite combined with the spontaneous side reactions with the electrolytes dramatically challenge the stability and safety of Li metal anode (LMA). Despite tremendous endeavors, current success relies on the use of significant excess of Li to compensate the loss of active Li during cycling. Herein, a near-surface Li+ irrigation strategy is developed to regulate the inhomogeneous Li deposition behavior and suppress the consequent side reactions under limited Li excess condition. The conformal polypyrrole (PPy) coating layer on Cu surface via oxidative chemical vapor deposition technique can induce the migration of Li+ to the interregional space between PPy and Cu, creating a near-surface Li+-rich region to smooth diffusion of ion flux and uniform the deposition. Moreover, as evidenced by multiscale characterizations including synchrotron high-energy X-ray diffraction scanning, a robust N-rich solid-electrolyte interface (SEI) is formed on the PPy skeleton to effectively suppress the undesired SEI formation/dissolution process. Strikingly, stable Li metal cycling performance under a high areal capacity of 10 mAh cm-2 at 2.0 mA cm-2 with merely 0.5 × Li excess is achieved. The findings not only resolve the long-standing poor LMA stability/safety issues, but also deepen the mechanism understanding of Li deposition process.

4.
Acc Chem Res ; 56(19): 2700-2712, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37728762

RESUMO

ConspectusLithium-sulfur (Li-S) batteries are promising for automotive applications due to their high theoretical energy density (2600 Wh/kg). In addition, the natural abundance of sulfur could mitigate the global raw material supply chain challenge of commercial lithium-ion batteries that use critical elements, such as nickel and cobalt. However, due to persistent polysulfide shuttling and uncontrolled lithium dendrite growth, Li-S batteries using nonencapsulated sulfur cathodes and conventional ether-based electrolytes suffer from rapid cell degradation upon cycling. Despite significant improvements in recent decades, there is still a big gap between lab research and commercialization of the technology. To date, the reported cell energy densities and cycling life of practical Li-S pouch cells remain largely unsatisfactory.Traditional approaches to improving Li-S performance are primarily focused on confining polysulfides using electronically conductive hosts. However, these micro- and mesoporous hosts suffer from limited pore volume to accommodate high sulfur loading and the associated volume change during cycling. Moreover, they fail to balance adsorption-conversion of polysulfides during charge-discharge, leading to the formation of massive dead sulfur. Such hosts are themselves electrochemically inactive, which decreases the practical energy density. In contrast, a series of nontraditional approaches, paired with advances in multiscale mechanistic understanding, have recently demonstrated exciting performance outcomes not only in conventional coin cells but also in practical pouch cells.In this Account, we first introduce our novel cathode design strategies to overcome polysulfide shuttling and sluggish redox kinetics in thick S cathodes via selenium-sulfur chemistry and cathode host engineering. Next, we gain a mechanistic understanding of Li-S batteries in various types of electrolytes via a series of spectroscopic, nuclear magnetic resonance, and electrochemical methods. Meanwhile, a novel cathode solid electrolyte interphase encapsulation strategy via nonviscous highly fluorinated ether-based electrolyte is introduced. The established selection rule by investigating how solvating power retards the shuttle effect and induces robust cathode/solid-electrolyte interphase formation is also included. We then discuss how the synergistic interactions between rational cathode structures and electrolytes can be exploited to tailor the reaction pathways and kinetics of S cathodes under high mass loading and lean electrolyte conditions. In addition, a novel interlayer design to simultaneously overcome degradation processes (polysulfide shuttling and lithium dendrite formation) and accelerate redox reaction kinetics is presented. Finally, this Account concludes with an overview of the challenges and strategies to develop Li-S pouch cells with high practical energy density, long cycle life, and fast-charging capability.

5.
Angew Chem Int Ed Engl ; 63(5): e202316112, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38088222

RESUMO

Compensating the irreversible loss of limited active lithium (Li) is essentially important for improving the energy-density and cycle-life of practical Li-ion battery full-cell, especially after employing high-capacity but low initial coulombic efficiency anode candidates. Introducing prelithiation agent can provide additional Li source for such compensation. Herein, we precisely implant trace Co (extracted from transition metal oxide) into the Li site of Li2 O, obtaining (Li0.66 Co0.11 □0.23 )2 O (CLO) cathode prelithiation agent. The synergistic formation of Li vacancies and Co-derived catalysis efficiently enhance the inherent conductivity and weaken the Li-O interaction of Li2 O, which facilitates its anionic oxidation to peroxo/superoxo species and gaseous O2 , achieving 1642.7 mAh/g~Li2O prelithiation capacity (≈980 mAh/g for prelithiation agent). Coupled 6.5 wt % CLO-based prelithiation agent with LiCoO2 cathode, substantial additional Li source stored within CLO is efficiently released to compensate the Li consumption on the SiO/C anode, achieving 270 Wh/kg pouch-type full-cell with 92 % capacity retention after 1000 cycles.

6.
Angew Chem Int Ed Engl ; 62(19): e202217476, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-36917790

RESUMO

The universal cathode crossover such as chemical and oxygen has been significantly overlooked in lithium metal batteries using high-energy cathodes which leads to severe capacity degradation and raises serious safety concerns. Herein, a versatile and thin (≈25 µm) interlayer composed of multifunctional active sites was developed to simultaneously regulate the Li deposition process and suppress the cathode crossover. The as-induced dual-gradient solid-electrolyte interphase combined with abundant lithiophilic sites enable stable Li stripping/plating process even under high current density of 10 mA cm-2 . Moreover, X-ray photoelectron spectroscopy and synchrotron X-ray experiments revealed that N-rich framework and CoZn dual active sites can effectively mitigate the undesired cathode crossover, hence significantly minimizing Li corrosion. Therefore, assembled lithium metal cells using various high-energy cathode materials including LiNi0.7 Mn0.2 Co0.1 O2 , Li1.2 Co0.1 Mn0.55 Ni0.15 O2 , and sulfur demonstrate significantly improved cycling stability with high cathode loading.

7.
J Am Chem Soc ; 144(44): 20372-20384, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36283038

RESUMO

The poor durability of Pt-based nanoparticles dispersed on carbon black is the challenge for the application of long-life polymer electrolyte fuel cells. Recent work suggests that Fe- and N-codoped carbon (Fe-N-C) might be a better support than conventional high-surface-area carbon. In this work, we find that the electrochemical surface area retention of Pt/Fe-N-C is much better than that of commercial Pt/C during potential cycling in both acidic and basic media. In situ inductively coupled plasma mass spectrometry studies indicate that the Pt dissolution rate of Pt/Fe-N-C is 3 times smaller than that of Pt/C during cycling. Density functional theory calculations further illustrate that the Fe-N-C substrate can provide strong and stable support to the Pt nanoparticles and alleviate the oxide formation by adjusting the electronic structure. The strong metal-substrate interaction, together with a lower metal dissolution rate and highly stable support, may be the reason for the significantly enhanced stability of Pt/Fe-N-C. This finding highlights the importance of carbon support selection to achieve a more durable Pt-based electrocatalyst for fuel cells.

8.
Nano Lett ; 21(8): 3633-3639, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33872030

RESUMO

Fe-N-C with atomically dispersed Fe single atoms is the most promising candidate to replace platinum for the oxygen reduction reaction (ORR) in fuel cells. However, the conventional synthesis procedures require quantities solvents and metal precursors, sluggish adsorption process, and tedious washing, resulting in limited metal doping and uneconomical for large-scale production. For the first time, Fe2O3 is adopted as the Fe precursor to derive abundant single Fe atoms dispersed on carbon surfaces. The Fe-N-C catalyst synthesized by this simple method shows an excellent ORR activity with half-wave potentials of 0.82 and 0.90 V in acidic and alkaline solutions, respectively. A single fuel cell with an optimized Fe-N-C cathode shows a high peak power density of 0.84 W cm-2. The solid-state transformation synthesis method developed in this study may shed light on mass production of single-atom-based catalysts.

9.
Angew Chem Int Ed Engl ; 61(27): e202203466, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35466514

RESUMO

The commercialization of lithium-sulfur (Li-S) batteries is still hindered by the unsatisfactory cell performance under practical working conditions, which is mainly caused by the sluggish cathode redox kinetics, severe polysulfide shuttling, and poor Li stripping/plating reversibility. Herein, we report an effective strategy by combining Se-doped S hosted in an ordered macroporous framework with a highly fluorinated ether (HFE)-based electrolyte to simultaneously address the aforementioned issues in both cathode and anode. A reversible and stable high areal capacity of >5.4 mAh cm-2 with high Coulombic efficiency >99.2 % can be achieved under high areal Se/S loading (5.8 mg cm-2 ), while the underlying mechanism was further revealed through synchrotron X-ray probes and Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS). The practical application potential was further evaluated at low (0 °C) and high (55 °C) temperatures under high areal Se/S loading (>5.0 mg cm-2 ) and thin Li metal (40 µm).

10.
Nano Lett ; 20(5): 3844-3851, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32283937

RESUMO

The further improvement of sodium ion batteries requires the elucidation of the mechanisms pertaining to reversibility, which allows the novel design of the electrode structure. Here, through a hydrogel-embedding method, we are able to confine the growth of few-layer SnS2 nanosheets between a nitrogen- and sulfur-doped carbon nanotube (NS-CNT) and amorphous carbon. The obtained carbon-sandwiched SnS2 nanosheets demonstrate excellent sodium storage properties. In operando small-angle X-ray scattering combined with the ex situ X-ray absorption near edge spectra reveal that the redox reactions between SnS2/NS-CNT and the sodium ion are highly reversible. On the contrary, the nanostructure evolution is found to be irreversible, in which the SnS2 nanosheets collapse, followed by the regeneration of SnS2 nanoparticles. This work provides operando insights into the chemical environment evolution and structure change of SnS2-based anodes, elucidating its reversible reaction mechanism, and illustrates the significance of engineered carbon support in ensuring the electrode structure stability.

11.
Angew Chem Int Ed Engl ; 60(15): 8258-8267, 2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33480154

RESUMO

Manganese-rich layered oxide materials hold great potential as low-cost and high-capacity cathodes for Na-ion batteries. However, they usually form a P2 phase and suffer from fast capacity fade. In this work, an O3 phase sodium cathode has been developed out of a Li and Mn-rich layered material by leveraging the creation of transition metal (TM) and oxygen vacancies and the electrochemical exchange of Na and Li. The Mn-rich layered cathode material remains primarily O3 phase during sodiation/desodiation and can have a full sodiation capacity of ca. 220 mAh g-1 . It delivers ca. 160 mAh g-1 specific capacity between 2-3.8 V with >86 % retention over 250 cycles. The TM and oxygen vacancies pre-formed in the sodiated material enables a reversible migration of TMs from the TM layer to the tetrahedral sites in the Na layer upon de-sodiation and sodiation. The migration creates metastable states, leading to increased kinetic barrier that prohibits a complete O3-P3 phase transition.

12.
J Am Chem Soc ; 142(46): 19745-19753, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33147025

RESUMO

The intrinsic poor thermal stability of layered LiNixCoyMn1-x-yO2 (NCM) cathodes and the exothermic side reactions triggered by the associated oxygen release are the main safety threats for their large-scale implantation. In the NCM family, it is widely accepted that Ni is the stability troublemaker, while Mn has long been considered as a structure stabilizer, whereas the role of Co remains elusive. Here, via Co/Mn exchange in a Ni-rich LiNi0.83Co0.11Mn0.06O2 cathode, we demonstrate that the chemical and structural stability of the deep delithiated NCM cathodes are significantly dominated by Co rather than the widely reported Mn. Operando synchrotron X-ray characterization coupling with in situ mass spectrometry reveal that the Co4+ reduces prior to the reduction of Ni4+ and could thus prolong the Ni migration by occupying the tetrahedra sites and, hence, postpone the oxygen release and thermal failure. In contrast, the Mn itself is stable, but barely stabilizes the Ni4+. Our results highlight the importance of evaluating the intrinsic role of compositional tuning on the Ni-rich/Co-free layered oxide cathode materials to guarantee the safe operation of high-energy Li-ion batteries.

13.
Angew Chem Int Ed Engl ; 59(40): 17634-17640, 2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-32645250

RESUMO

Electrolyte modulation simultaneously suppresses polysulfide the shuttle effect and lithium dendrite formation of lithium-sulfur (Li-S) batteries. However, the sluggish S redox kinetics, especially under high S loading and lean electrolyte operation, has been ignored, which dramatically limits the cycle life and energy density of practical Li-S pouch cells. Herein, we demonstrate that a rational combination of selenium doping, core-shell hollow host structure, and fluorinated ether electrolytes enables ultrastable Li stripping/plating and essentially no polysulfide shuttle as well as fast redox kinetics. Thus, high areal capacity (>4 mAh cm-2 ) with excellent cycle stability and Coulombic efficiency were both demonstrated in Li metal anode and thick S cathode (4.5 mg cm-2 ) with a low electrolyte/sulfur ratio (10 µL mg-1 ). This research further demonstrates a durable Li-Se/S pouch cell with high specific capacity, validating the potential practical applications.

14.
Nano Lett ; 18(1): 336-346, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29240435

RESUMO

Room-temperature sodium-ion batteries have attracted increased attention for energy storage due to the natural abundance of sodium. However, it remains a huge challenge to develop versatile electrode materials with favorable properties, which requires smart structure design and good mechanistic understanding. Herein, we reported a general and scalable approach to synthesize three-dimensional (3D) titania-graphene hybrid via electrostatic-interaction-induced self-assembly. Synchrotron X-ray probe, transmission electron microscopy, and computational modeling revealed that the strong interaction between titania and graphene through comparably strong van der Waals forces not only facilitates bulk Na+ intercalation but also enhances the interfacial sodium storage. As a result, the titania-graphene hybrid exhibits exceptional long-term cycle stability up to 5000 cycles, and ultrahigh rate capability up to 20 C for sodium storage. Furthermore, density function theory calculation indicated that the interfacial Li+, K+, Mg2+, and Al3+ storage can be enhanced as well. The proposed general strategy opens up new avenues to create versatile materials for advanced battery systems.

15.
Nano Lett ; 17(3): 1512-1519, 2017 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-28177638

RESUMO

When designing nano-Si electrodes for lithium-ion batteries, the detrimental effect of the c-Li15Si4 phase formed upon full lithiation is often a concern. In this study, Si nanoparticles with controlled particle sizes and morphology were synthesized, and parasitic reactions of the metastable c-Li15Si4 phase with the nonaqueous electrolyte was investigated. The use of smaller Si nanoparticles (∼60 nm) and the addition of fluoroethylene carbonate additive played decisive roles in the parasitic reactions such that the c-Li15Si4 phase could disappear at the end of lithiation. This suppression of c-Li15Si4 improved the cycle life of the nano-Si electrodes but with a little loss of specific capacity. In addition, the characteristic c-Li15Si4 peak in the differential capacity (dQ/dV) plots can be used as an early-stage indicator of cell capacity fade during cycling. Our findings can contribute to the design guidelines of Si electrodes and allow us to quantify another factor to the performance of the Si electrodes.

16.
Nano Lett ; 17(2): 953-962, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28072542

RESUMO

Sodium-ion batteries (SIBs) have been considered as one of the promising power source candidates for the stationary storage industries owing to the much lower cost of sodium than lithium. It is well-known that the electrode materials largely determine the energy density of the battery systems. However, recent discoveries on the electrode materials showed that most of them present distinct lithium and sodium storage performance, which is not yet well understood. In this work, we performed a comparative understanding on the structural changes of porous cobalt oxide during its electrochemical lithiation and sodiation process by in operando synchrotron small angel X-ray scattering, X-ray diffraction, and X-ray absorption spectroscopy. It was found that compared to the lithiation process, the porous cobalt oxide undergoes less pore structure changes, oxidation state, and local structure changes as well as crystal structure evolution during its sodiation process, which is attributed to the intrinsic low sodiation activity of cobalt oxide as evidenced by ab initio molecular dynamics simulations. Moreover, it was indicated that the sodiation activity of metal sulfides is higher than that of metal oxides, indicating a better candidate for SIBs. Such understanding is crucial for future design and improvement of high-performance electrode materials for SIBs.

17.
Angew Chem Int Ed Engl ; 57(11): 2879-2883, 2018 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-29378088

RESUMO

Sustainable sodium-ion batteries (SSIBs) using renewable organic electrodes are promising alternatives to lithium-ion batteries for the large-scale renewable energy storage. However, the lack of high-performance anode material impedes the development of SSIBs. Herein, we report a new type of organic anode material based on azo group for SSIBs. Azobenzene-4,4'-dicarboxylic acid sodium salt is used as a model to investigate the electrochemical behaviors and reaction mechanism of azo compound. It exhibits a reversible capacity of 170 mAh g-1 at 0.2C. When current density is increased to 20C, the reversible capacities of 98 mAh g-1 can be retained for 2000 cycles, demonstrating excellent cycling stability and high rate capability. The detailed characterizations reveal that azo group acts as an electrochemical active site to reversibly bond with Na+ . The reversible redox chemistry between azo compound and Na ions offer opportunities for developing long-cycle-life and high-rate SSIBs.

18.
Angew Chem Int Ed Engl ; 57(37): 11918-11923, 2018 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-30040187

RESUMO

Na2 FePO4 F is a promising cathode material for Na-ion batteries owing to its relatively high discharge voltage and excellent cycling performance. Now, the long- and short-range structural evolution of Na2 FePO4 F during cycling is studied by in situ high-energy X-ray diffraction (XRD), ex situ solid-state nuclear magnetic resonance (NMR), and first-principles DFT calculations. DFT calculations suggest that the intermediate phase, Na1.5 FePO4 F, adopts the space group of P21 /c, which is a subgroup (P21 /b11, No. 14) of Pbcn (No. 60), the space group of the starting phase, Na2 FePO4 F, and this space group provides a good fit to the experimental XRD and NMR results. The two crystallographically unique Na sites in the structure of Na2 FePO4 F behave differently during cycling, where the Na ions on the Na2 site are electrochemically active while those on the Na1 site are inert. This study determines the structural evolution and the electrochemical reaction mechanisms of Na2 FePO4 F in a Na-ion battery.

19.
Nano Lett ; 16(6): 3955-65, 2016 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-27222911

RESUMO

Sodium-ion batteries are promising alternatives to lithium-ion batteries for large-scale applications. However, the low capacity and poor rate capability of existing anodes for sodium-ion batteries are bottlenecks for future developments. Here, we report a high performance nanostructured anode material for sodium-ion batteries that is fabricated by high energy ball milling to form black phosphorus/Ketjenblack-multiwalled carbon nanotubes (BPC) composite. With this strategy, the BPC composite with a high phosphorus content (70 wt %) could deliver a very high initial Coulombic efficiency (>90%) and high specific capacity with excellent cyclability at high rate of charge/discharge (∼1700 mAh g(-1) after 100 cycles at 1.3 A g(-1) based on the mass of P). In situ electrochemical impedance spectroscopy, synchrotron high energy X-ray diffraction, ex situ small/wide-angle X-ray scattering, high resolution transmission electronic microscopy, and nuclear magnetic resonance were further used to unravel its superior sodium storage performance. The scientific findings gained in this work are expected to serve as a guide for future design on high performance anode material for sodium-ion batteries.

20.
Nano Lett ; 16(4): 2663-73, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-27022761

RESUMO

In contrast to the stable cycle performance of space confined Se-based cathodes for lithium batteries in carbonate-based electrolytes, their common capacity fading in ether-based electrolytes has been paid less attention and not yet well-addressed so far. In this work, the lithiation/delithiation of amorphous Se2S5 confined in micro/mesoporous carbon (Se2S5/MPC) cathode was investigated by in situ X-ray near edge absorption spectroscopy (XANES) and theoretical calculations. The Se2S5/MPC composite was synthesized by a modified vaporization-condensation method to ensure a good encapsulation of Se2S5 into the pores of MPC host. In situ XANES results illustrated that the lithiation/delithiation reversibility of Se component was gradually decreased in ether-based electrolytes, leading to an aggravated formation of long-chain polyselenides during cycling and further capacity decay. Moreover, ab initio calculations revealed that the binding energy of polyselenides (Li2Sen) with carbon host is in an order of Li2Se6 > Li2Se4 > Li2Se. The insights into the failure mechanism of Se-based cathode gain in this work are expected to serve as a guide for future design on high performance Se-based cathodes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA