Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2307410, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778499

RESUMO

The detection of monoamine neurotransmitters is of paramount importance as the neurotransmitters are the chemical messengers regulating the gut-brain axis (GBA). It requires real-time, ultrasensitive, and selective sensing of the neurotransmitters in the gastric/intestinal fluid. However, multi-components present in the gastric/intestinal fluid make sensing challenging to achieve in terms of ultra-high sensitivity and selectivity. Herein, an approach is introduced to utilize vanadium single atom catalytic (SAC) centers in van der Waals MoS2 (V-MoS2) to selectively detect real-time serotonin (5-HT) in artificial gastric/intestinal fluid. The synergetic effect of V-SACs and the surface S-bonds on the MoS2 surface, enables an extremely wide range of 5-HT detection (from 1 pM to 100 µM), with optimum selectivity and interference resistance. By combining density functional theory calculations and scanning transmission electron microscopy, it is concluded that the V-SACs embedded in the MoS2 network create active sites that greatly facilitate the charge exchange between the material and the 5-HT molecules. This result allows the 5-HT detection in GBA studies to be more reliable, and the material tunability provides a general platform to achieve real-time and multi-component detection of other monoamine neurotransmitters in GBA such as dopamine and norepinephrine.

2.
Angew Chem Int Ed Engl ; 63(19): e202401386, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38488840

RESUMO

Efficient water dissociation to atomic hydrogen (H*) with restrained recombination of H* is crucial for improving the H* utilization for electrochemical dechlorination, but is currently limited by the lack of feasible electrodes. Herein, we developed a monolithic single-atom electrode with Co single atoms anchored on the inherent oxide layer of titanium foam (Co1-TiOx/Ti), which can efficiently dissociate water into H* and simultaneously inhibit the recombination of H*, by taking advantage of the single-atom reverse hydrogen spillover effect. Experimental and theoretical calculations demonstrated that H* could be rapidly generated on the oxide layer of titanium foam, and then overflowed to the adjacent Co single atom for the reductive dechlorination. Using chloramphenicol as a proof-of-concept verification, the resulting Co1-TiOx/Ti monolithic electrode exhibited an unprecedented performance with almost 100 % dechlorination at -1.0 V, far superior to that of traditional indirect reduction-driven commercial Pd/C (52 %) and direct reduction-driven Co1-N-C (44 %). Moreover, its dechlorination rate constant of 1.64 h-1 was 4.3 and 8.6 times more active than those of Pd/C (0.38 h-1) and Co1-N-C (0.19 h-1), respectively. Our research sheds light on the rational design of hydrogen spillover-related electrocatalysts to simultaneously improve the H* generation, transfer, and utilization for environmental and energy applications.

3.
Small ; 19(20): e2206750, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36720776

RESUMO

Transition metal oxides (TMOs) have attracted considerable attention owing to their strong anchoring ability and natural abundance. However, their single-site adsorption toward sulfur (S) species significantly lowers the possibility of S species reacting with Li+ in the electrolyte and increases the reaction barrier. This study investigates molecular modification by coupling the TMO structure with Li+ conductive polymer ligands, and vanadyl ethylene glycolate (VEG) is successfully synthesized by introducing organic ligands into the VOx crystal structure. In addition to the strong interaction between the VOx and lithium polysulfides via the V-S bond, the groups in the VEG polymer ligands can reversibly couple/decouple with Li+ in the electrolyte. Such dual-site adsorption enables a smooth dynamic adsorption-diffusion process. Accordingly, the VEG-based Li-S cells exhibit excellent rate reversibility, cyclic stability, and a long cycle life without the addition of conducting agents. Encouragingly, the VEG-based cells also exhibit close and excellent capacity decays of 0.081%, 0.078%, and 0.095% at 0, 25, and 50 °C (1 C for 200 cycles), respectively. This work provides a novel approach for developing advanced catalysts that can realize Li-S batteries with long-term durability, fast charge-discharge properties, and applications in a wide temperature range.

4.
Biochem Biophys Res Commun ; 529(4): 963-969, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32819606

RESUMO

Influenza A virus, the H9N2 subtype, is an avian influenza virus that has long been circulating in the worldwide poultry industry and is occasionally found to be transmissible to humans. Evidence from genomic analysis suggests that H9N2 provides the genes for the H5N1 and H7N9 subtypes, which have been found to infect mammals and pose a threat to human health. However, due to the lack of a structural model of the interaction between H9N2 and host cells, the mechanism of the extensive adaptability and strong transformation capacity of H9N2 is not fully understood. In this paper, we collected 40 representative H9N2 virus samples reported recently, mainly in China and neighboring countries, and investigated the interactions between H9N2 hemagglutinin and the mammalian receptor, the polysaccharide α-2,6-linked lactoseries tetrasaccharide c, at the atomic level using docking simulation tools. We categorized the mutations of studied H9N2 hemagglutinin according to their effects on ligand-binding interactions and the phylogenetic analysis. The calculations indicated that all the studied H9N2 viruses can establish a tight binding with LSTc although the mutations caused a variety of perturbations to the local conformation of the binding pocket. Our calculations suggested that a marginal equilibrium is established between the conservative ligand-receptor interaction and the conformational dynamics of the binding pocket, and it might be this equilibrium that allows the virus to accommodate mutations to adapt to a variety of environments. Our results provided a way to understand the adaptive mechanisms of H9N2 viruses, which may help predict its propensity to spread in mammals.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Interações Hospedeiro-Patógeno/genética , Vírus da Influenza A Subtipo H9N2/química , Polissacarídeos/química , Receptores Virais/química , Animais , Sítios de Ligação , Galinhas/virologia , China/epidemiologia , Cristalografia por Raios X , Patos/virologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Humanos , Virus da Influenza A Subtipo H5N1/química , Virus da Influenza A Subtipo H5N1/classificação , Virus da Influenza A Subtipo H5N1/metabolismo , Subtipo H7N9 do Vírus da Influenza A/química , Subtipo H7N9 do Vírus da Influenza A/classificação , Subtipo H7N9 do Vírus da Influenza A/metabolismo , Vírus da Influenza A Subtipo H9N2/classificação , Vírus da Influenza A Subtipo H9N2/metabolismo , Influenza Aviária/epidemiologia , Influenza Aviária/transmissão , Influenza Aviária/virologia , Influenza Humana/epidemiologia , Influenza Humana/transmissão , Influenza Humana/virologia , Simulação de Dinâmica Molecular , Filogenia , Polissacarídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Receptores Virais/metabolismo , Homologia Estrutural de Proteína
5.
J Phys Chem Lett ; 15(19): 5047-5055, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38701394

RESUMO

In this study, we analyzed the species in a model electrolyte consisting of a lithium salt, lithium bis(trifluoromethane sulfone)imide (LiTFSI), and a widely used neutral solvent propylene carbonate (PC) with excess infrared (IR) spectroscopy, ab initio molecular dynamics simulations (AIMD), and quantum chemical calculations. Complexing species including the charged ones [Li+(PC)4, TFSI-, TFSI-(PC), TFSI-(PC)2, and Li(TFSI)2-] are identified in the electrolyte. Quantum chemical calculations show strong Li+···O(PC) interaction, which suggests that Li+ would transport in the mode of solvation-carriage. However, the interaction energy of each hydrogen bond in TFSI-(PC) is very weak, suggesting that TFSI- would transport in hopping mode. In addition, the concentration dependences of the relative population of the species were also derived, providing a scenario for the dissolving process of the salt in PC. These in-depth studies provide physical insights into the structural and interactive properties of the electrolyte of lithium-ion batteries.

6.
Carbohydr Res ; 536: 109022, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38242069

RESUMO

Oligosaccharide degradation products of alginate (AOS) hold significant potential in diverse fields, including pharmaceuticals, health foods, textiles, and agricultural production. Enzymatic alginate degradation is appealing due to its mild conditions, predictable activity, high yields, and controllability. However, the alginate degradation often results in a complex mixture of oligosaccharides, necessitating costly purification to isolate highly active oligosaccharides with a specific degree of polymerization (DP). Addressing this, our study centers on the alginate lyase AlyB from Vibrio Splendidus OU02, which uniquely breaks down alginate into mono-distributed trisaccharides. This enzyme features a polysaccharide lyase family 7 domain (PL-7) and a CBM32 carbohydrate-binding module connected by a helical structure. Through normal-mode-based docking and all-atom molecular simulations, we demonstrate that AlyB's substrate and product specificities are influenced by the spatial conformation of the catalytic pocket and the flexibility of its structure. The helically attached CBM is pivotal in releasing trisaccharides, which is crucial for avoiding further degradation. This study sheds light on AlyB's specificity and efficiency and contributes to the evolving field of enzyme design for producing targeted oligosaccharides, with significant implications for various bioindustries.


Assuntos
Simulação de Dinâmica Molecular , Oligossacarídeos , Oligossacarídeos/metabolismo , Polissacarídeo-Liases/metabolismo , Trissacarídeos , Alginatos/metabolismo , Especificidade por Substrato , Concentração de Íons de Hidrogênio
7.
Adv Mater ; : e2403998, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38801699

RESUMO

Reversible protonic ceramic electrochemical cells (R-PCECs) offer the potential for high-efficiency power generation and green hydrogen production at intermediate temperatures. However, the commercial viability of R-PCECs is hampered by the sluggish kinetics of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) within conventional air electrodes operating at reduced temperatures. To address this challenge, this work introduces a novel approach based on the simultaneous optimization of bulk-phase metal-oxygen bonds and in-situ formation of a metal oxide nano-catalyst surface modification. This strategy is designed to expedite the ORR/OER electrocatalytic activity of air electrodes exhibiting triple (O2-, H+, e-) conductivity. Specifically, this engineered air electrode nanocomposite-Ba(Co0.4Fe0.4Zr0.1Y0.1)0.95Ni0.05F0.1O2.9-δ demonstrates remarkable ORR/OER catalytic activity and exceptional durability in R-PCECs. This is evidenced by significantly improved peak power density from 626 to 996 mW cm-2 and highly stable reversibility over a 100-h cycling period. This research offers a rational design strategy to achieve high-performance R-PCEC air electrodes with superior operational activity and stability for efficient and sustainable energy conversion and storage.

8.
Adv Mater ; : e2402234, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38781597

RESUMO

Rationally designed defects in a crystal can confer unique properties. This study showcases a novel dual-defects engineering strategy to tailor the electrochemical response of metal-organic framework (MOF) materials used for electrochemical energy storage. Salicylic acid (SA) is identified as an effective modulator to control MOF-74 growth and induce structural defects, and cobalt cation doping is adopted for introducing a second type of defect. The resulting dual-defects engineered bimetallic MOF exhibits a discharging capacity of 218.6 mAh g-1, 4.4 times that of the pristine MOF-74, and significantly improved cycling stability. Moreover, the engineered MOF-74(Ni0.675Co0.325)-8//Zn aqueous battery shows top energy/power density performances for Ni-Zn batteries (266.5 Wh kg-1, 17.22 kW kg-1). Comprehensive investigations reveal that engineered defects modify the local coordination environment and promote the in situ electrochemical reconfiguration during operation to significantly boost the electrochemical activity. This work suggests that rational tailoring of the defects within the MOF crystal is an effective strategy to manipulate the coordination environment of the metal centers and the corresponding electrochemical reconfiguration for electrochemical applications.

9.
Nanoscale ; 15(6): 2756-2766, 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36656066

RESUMO

Electrochemical conversion of CO2-to-CH4 is a process of converting the inert greenhouse gas into energy molecules. It offers great promise for the transformation of carbon-neutral economy. However, achieving high CH4 activity and selectivity remains a major challenge because the electrochemical reduction of CO2-to-CH4 is accompanied by various C1 intermediates at the catalytic site, involving multiple proton-coupled electron transfer processes. Herein, different from the traditional designing strategy, we propose a bio-inspired theoretical design approach to construct a heterogeneous single-cluster catalyst Ni100-Fe4S4 at the atomic level, which may show high CO2 electroreduction performance. Combined with the crystallographic data and theoretical calculations, Ni100-Fe4S4 and CO dehydrogenase exhibit highly similar catalytic geometric active centers and CO2 binding modes. By exploring the origin of the catalytic activity of this biomimetic structure, we found that the activation of CO2 on Ni100-Fe4S4 theoretically exceeds that on natural CO dehydrogenase. Density functional theory calculations reveal that the dehydrogenase enzyme-liked Fe-Ni active site serves as an electron enrichment 'electro-bridge' (an electron-rich highly active catalytic site), which can activate CO2 molecules efficiently and stabilize various intermediates in multistep elementary reactions to selectively produce CH4 at a low overpotential (0.13 eV). The calculated CO2 electroreduction pathways are well consistent with the nickel-based catalytic materials reported in experimental studies. Our work showcases and highlights the rational design of high-performance catalytic materials via the biomimetic methodology at the atomic level.

10.
Adv Sci (Weinh) ; 10(33): e2303916, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37867214

RESUMO

Investigations into lithium-sulfur batteries (LSBs) has focused primarily on the initial conversion of lithium polysulfides (LiPSs) to Li2 S2 . However, the subsequent solid-solid reaction from Li2 S2 to Li2 S and the Li2 S decomposition process should be equally prioritized. Creating a virtuous cycle by balancing all three chemical reaction processes is crucial for realizing practical LSBs. Herein, amorphous Ni3 B in synergy with carbon nanotubes (aNi3 B@CNTs) is proposed to implement the consecutive catalysis of S8(solid) → LiPSs(liquid) → Li2 S(solid) →LiPSs(liquid) . Systematic theoretical simulations and experimental analyses reveal that aNi3 B@CNTs with an isotropic structure and abundant active sites can ensure rapid LiPSs adsorption-catalysis as well as uniform Li2 S precipitation. The uniform Li2 S deposition in synergy with catalysis of aNi3 B enables instant/complete oxidation of Li2 S to LiPSs. The produced LiPSs are again rapidly and uniformly adsorbed for the next sulfur evolution process, thus creating a virtuous cycle for sulfur species conversion. Accordingly, the aNi3 B@CNTs-based cell presents remarkable rate capability, long-term cycle life, and superior cyclic stability, even under high sulfur loading and extreme temperature environments. This study proposes the significance of creating a virtuous cycle for sulfur species conversion to realize practical LSBs.

11.
J Colloid Interface Sci ; 650(Pt A): 211-221, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37402327

RESUMO

Pathogenic biofilm induced oral diseases have posed a significant treat to human health, such as periodontitis resulting from the formation of bacterial biofilm on teeth and gums. The traditional treatment methods such as mechanical debridement and antibiotic therapy encounter the poor therapeutic effect. Recently, numerous nanozymes with excellent antibacterial effect have been widely used in the treatment of oral diseases. In this study, a novel iron-based nanozyme (FeSN) generated by histidine-doped FeS2 with high peroxidase-like (POD-like) activity was designed for the oral biofilm removal and treatment of periodontitis. FeSN exhibited an extremely high POD-like activity, and enzymatic reaction kinetics and theoretical calculations had demonstrated its catalytic efficiency to be approximately 30 times than that of FeS2. The antibacterial experiments showed that FeSN had robust antibacterial activity against Fusobacterium nucleatum in the presence of H2O2, causing a reduction in the levels of glutathione reductase and ATP in bacterial cells, while increasing the level of oxidase coenzyme. The ultrahigh POD-like activity of FeSN allowed for easy detection of pathogenic biofilms and promoted the breakdown of biofilm structure. Furthermore, FeSN demonstrated excellent biocompatibility and low cytotoxicity to human fibroblast cells. In a rat model of periodontitis, FeSN exhibited significant therapeutic effects by reducing the extent of biofilm formation, inflammation, and alveolar bone loss. Taken together, our results suggested that FeSN, generated by self-assembly of two amino acids, represented a promising approach for biofilm removal and periodontitis treatment. This method has the potential to overcome the limitations of current treatments and provide an effective alternative for periodontitis treatment.


Assuntos
Histidina , Periodontite , Ratos , Animais , Humanos , Peroxidase , Peróxido de Hidrogênio/farmacologia , Periodontite/tratamento farmacológico , Periodontite/microbiologia , Biofilmes , Antibacterianos/química , Corantes/farmacologia
12.
Adv Sci (Weinh) ; 10(4): e2206084, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36470654

RESUMO

Silicon suboxide (SiOx ) has attracted widespread interest as Li-ion battery (LIB) anodes. However, its undesirable electronic conductivity and apparent volume effect during cycling impede its practical applications. Herein, sustainable rice husks (RHs)-derived SiO2 are chosen as a feedstock to design SiOx /iron-nitrogen co-doped carbon (Fe-N-C) materials. Using a facile electrospray-carbonization strategy, SiOx nanoparticles (NPs) are encapsulated in the nitrogen-doped carbon (N-C) frameworks decorating atomically dispersed iron sites. Systematic characterizations including high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and X-ray absorption fine structure (XAFS) verify the existence of Fe single atoms and typical coordination environment. Benefiting from its structural and compositional merits, the SiOx /Fe-N-C anode delivers significantly improved discharge capacity of 799.1 mAh g-1 , rate capability, and exceptional durability, compared with pure SiO2 and SiOx /N-C, which has been revealed by the density functional theory (DFT) calculations. Additionally, the electrochemical tests and in situ X-ray diffraction (XRD) analysis reveal the oxidation of Lix Si phase and the storage mechanism. The synthetic strategy is universal for the design and synthesis of metal single atoms/clusters dispersed N-C frameworks encapsulated SiOx NPs. Meanwhile, this work provides impressive insights into developing various LIB anode materials suffering from inferior conductivity and huge volume fluctuations.

13.
Nat Commun ; 14(1): 5235, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37640714

RESUMO

Stable cathodes with multiple redox-active centres affording a high energy density, fast redox kinetics and a long life are continuous pursuits for aqueous zinc-organic batteries. Here, we achieve a high-performance zinc-organic battery by tuning the electron delocalization within a designed fully conjugated two-dimensional hydrogen-bonded organic framework as a cathode material. Notably, the intermolecular hydrogen bonds endow this framework with a transverse two-dimensional extended stacking network and structural stability, whereas the multiple C = O and C = N electroactive centres cooperatively trigger multielectron redox chemistry with super delocalization, thereby sharply boosting the redox potential, intrinsic electronic conductivity and redox kinetics. Further mechanistic investigations reveal that the fully conjugated molecular configuration enables reversible Zn2+/H+ synergistic storage accompanied by 10-electron transfer. Benefitting from the above synergistic effects, the elaborately tailored organic cathode delivers a reversible capacity of 498.6 mAh g-1 at 0.2 A g-1, good cyclability and a high energy density (355 Wh kg-1).

14.
Adv Mater ; 35(44): e2305074, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37452655

RESUMO

Producing indispensable hydrogen and oxygen for social development via water electrolysis shows more prospects than other technologies. Although electrocatalysts have been explored for centuries, a universal activity descriptor for both hydrogen-evolution reaction (HER) and oxygen-evolution reaction (OER) is not yet developed. Moreover, a unifying concept is not yet established to simultaneously understand HER/OER mechanisms. Here, the relationships between HER/OER activities in three common electrolytes and over ten representative material properties on 12 3d-metal-based model oxides are rationally bridged through statistical methodologies. The orbital charge-transfer energy (Δ) can serve as an ideal universal descriptor, where a neither too large nor too small Δ (≈1 eV) with optimal electron-cloud density around Fermi level affords the best activities, fulfilling Sabatier's principle. Systematic experiments and computations unravel that pristine oxide with Δ ≈ 1 eV possesses metal-like high-valence configurations and active lattice-oxygen sites to help adsorb key protons in HER and induce lattice-oxygen participation in the OER, respectively. After reactions, partially generated metals in the HER and high-valence hydroxides in the OER dominate proton adsorption and couple with pristine lattice-oxygen activation, respectively. These can be successfully rationalized by the unifying orbital charge-transfer theory. This work provides the foundation of rational material design and mechanism understanding for many potential applications.

15.
ACS Nano ; 17(20): 20643-20653, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37796635

RESUMO

Here, by introducing polystyrenesulfonate (PSS) as a multifunctional bridging molecule to synchronously coordinate the interaction between the precursor and the structure-directing agent, we developed a mesoporous conductive polymer of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) featuring adjustable size in the range of 105-1836 nm, open nanochannels, large specific surface area (105.5 m2 g-1), and high electrical conductivity (172.9 S cm-1). Moreover, a large-area ultrathin PEDOT:PSS thin film with well-defined mesopores can also be obtained by controllable growth on various functional interfaces. As an example, we demonstrated that the iodine-loaded mesoporous PEDOT:PSS nanospheres can serve as a promising cathode for aqueous zinc-iodine batteries with high specific capacity (241 mAh g-1), excellent rate performance, and superlong 20,000 cycle life. In-depth theoretical calculations and systematic experimental results together reveal that the exposed sulfur- and oxygen-containing functional groups hold strong interactions with iodine species, resulting in effectively anchoring iodine species and inhibiting the shuttling of polyiodide intermediates, thus ensuring the long-term stability of the batteries. This work introduces a member to the family of mesoporous materials as well as porous polymers with versatile applications.

16.
ACS Appl Mater Interfaces ; 14(45): 51190-51199, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36342830

RESUMO

Nanomaterial is the Holy Grail of material science, which has been widely applied in the fields of energy, environment, chemistry, and biomedicine. Its catalytic merits were usually ascribed to the advantages of size effect, strain effect, and covalent effect. Noncovalent interactions are critical in the catalysis processes but often overlooked. Herein, different from the traditional understandings, we discover for the first time and give systematic insights into a unique noncovalent terminal σ-hole phenomenon in the 3d-metal-based nanorods, which should be one of the key origins of nanomaterial activity. As a proof-of-concept, pure metal and alloyed core-shell nanoclusters/nanorods composed of the two most important 3d metals (Co and Ni) growing from 0.5 to 2.5 nm are investigated. Unlike nanoclusters, the σ-hole only appears at the terminal sites of nanorods and the magnitude of the terminal σ-hole generally enhances with the growing processes. Further investigations show that this terminal σ-hole is closely related to the important physicochemical properties of nanorods. For example, the work function along the axis of the terminal σ-hole is smaller than other directions, contributing to the facile electronic transport along the axis of the terminal σ-hole. Most importantly, we find that the d-orbital center of the atoms around the terminal σ-hole shifts closer to the Fermi level as compared with other atoms, which can endow the terminal sites in nanorods with the higher chemical adsorption capability. We believe that this work will provide critical guidance for the rational design of nanomaterials in many potential applications.

17.
Adv Sci (Weinh) ; 9(23): e2201654, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35717677

RESUMO

Future energy demands for green hydrogen have fueled intensive research on proton-exchange membrane water electrolyzers (PEMWE). However, the sluggish oxygen evolution reaction (OER) and highly corrosive environment on the anode side narrow the catalysts to be expensive Ir-based materials. It is very challenging to develop cheap and effective OER catalysts. Herein, Co-hexamethylenetetramine metal-organic framework (Co-HMT) as the precursor and a fast-quenching method is employed to synthesize RuO2 nanorods loaded on antimony-tin oxide (ATO). Physical characterizations and theoretical calculations indicate that the ATO can increase the electrochemical surface areas of the catalysts, while the tensile strains incorporated by quenching can alter the electronic state of RuO2 . The optimized catalyst exhibits a small overpotential of 198 mV at 10 mA cm-2 for OER, and keeps almost unchanged after 150 h chronopotentiometry. When applied in a real PEMWE assembly, only 1.51 V is needed for the catalyst to reach a current density of 1 A cm-2 .

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA