Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 298(6): 102009, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35525275

RESUMO

G protein-sensitive inwardly rectifying potassium (GIRK) channels are important pharmaceutical targets for neuronal, cardiac, and endocrine diseases. Although a number of GIRK channel modulators have been discovered in recent years, most lack selectivity. GIRK channels function as either homomeric (i.e., GIRK2 and GIRK4) or heteromeric (e.g., GIRK1/2, GIRK1/4, and GIRK2/3) tetramers. Activators, such as ML297, ivermectin, and GAT1508, have been shown to activate heteromeric GIRK1/2 channels better than GIRK1/4 channels with varying degrees of selectivity but not homomeric GIRK2 and GIRK4 channels. In addition, VU0529331 was discovered as the first homomeric GIRK channel activator, but it shows weak selectivity for GIRK2 over GIRK4 (or G4) homomeric channels. Here, we report the first highly selective small-molecule activator targeting GIRK4 homomeric channels, 3hi2one-G4 (3-[2-(3,4-dimethoxyphenyl)-2-oxoethyl]-3-hydroxy-1-(1-naphthylmethyl)-1,3-dihydro-2H-indol-2-one). We show that 3hi2one-G4 does not activate GIRK2, GIRK1/2, or GIRK1/4 channels. Using molecular modeling, mutagenesis, and electrophysiology, we analyzed the binding site of 3hi2one-G4 formed by the transmembrane 1, transmembrane 2, and slide helix regions of the GIRK4 channel, near the phosphatidylinositol-4,5-bisphosphate binding site, and show that it causes channel activation by strengthening channel-phosphatidylinositol-4,5-bisphosphate interactions. We also identify slide helix residue L77 in GIRK4, corresponding to residue I82 in GIRK2, as a major determinant of isoform-specific selectivity. We propose that 3hi2one-G4 could serve as a useful pharmaceutical probe in studying GIRK4 channel function and may also be pursued in drug optimization studies to tackle GIRK4-related diseases such as primary aldosteronism and late-onset obesity.


Assuntos
Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G , Indóis , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/agonistas , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Humanos , Indóis/farmacologia , Modelos Moleculares , Fosfatidilinositol 4,5-Difosfato/metabolismo
2.
Chem Senses ; 482023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37625013

RESUMO

Lopinavir and ritonavir (LPV/r) are the primary anti-human immunodeficiency virus (HIV) drugs recommended by the World Health Organization for treating children aged 3 years and above who are infected with the HIV. These drugs are typically available in liquid formulations to aid in dosing for children who cannot swallow tablets. However, the strong bitter taste associated with these medications can be a significant obstacle to adherence, particularly in young children, and can jeopardize the effectiveness of the treatment. Studies have shown that poor palatability can affect the survival rate of HIV-infected children. Therefore, developing more child-friendly protease inhibitor formulations, particularly those with improved taste, is critical for children with HIV. The molecular mechanism by which lopinavir and ritonavir activate bitter taste receptors, TAS2Rs, is not yet clear. In this study, we utilized a calcium mobilization assay to characterize the activation of bitter taste receptors by lopinavir and ritonavir. We discovered that lopinavir activates TAS2R1 and TAS2R13, while ritonavir activates TAS2R1, TAS2R8, TAS2R13, and TAS2R14. The development of bitter taste blockers that target these receptors with a safe profile would be highly desirable in eliminating the unpleasant bitter taste of these anti-HIV drugs.


Assuntos
Fármacos Anti-HIV , Paladar , Humanos , Pré-Escolar , Ritonavir/farmacologia , Lopinavir/farmacologia , Receptores Acoplados a Proteínas G
3.
J Biol Chem ; 296: 100535, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33713702

RESUMO

Atrial fibrillation (AF) is the most commonly diagnosed cardiac arrhythmia and is associated with increased morbidity and mortality. Currently approved AF antiarrhythmic drugs have limited efficacy and/or carry the risk of ventricular proarrhythmia. The cardiac acetylcholine activated inwardly rectifying K+ current (IKACh), composed of Kir3.1/Kir3.4 heterotetrameric and Kir3.4 homotetrameric channel subunits, is one of the best validated atrial-specific ion channels. Previous research pointed to a series of benzopyran derivatives with potential for treatment of arrhythmias, but their mechanism of action was not defined. Here, we characterize one of these compounds termed Benzopyran-G1 (BP-G1) and report that it selectively inhibits the Kir3.1 (GIRK1 or G1) subunit of the KACh channel. Homology modeling, molecular docking, and molecular dynamics simulations predicted that BP-G1 inhibits the IKACh channel by blocking the central cavity pore. We identified the unique F137 residue of Kir3.1 as the critical determinant for the IKACh-selective response to BP-G1. The compound interacts with Kir3.1 residues E141 and D173 through hydrogen bonds that proved critical for its inhibitory activity. BP-G1 effectively blocked the IKACh channel response to carbachol in an in vivo rodent model and displayed good selectivity and pharmacokinetic properties. Thus, BP-G1 is a potent and selective small-molecule inhibitor targeting Kir3.1-containing channels and is a useful tool for investigating the role of Kir3.1 heteromeric channels in vivo. The mechanism reported here could provide the molecular basis for future discovery of novel, selective IKACh channel blockers to treat atrial fibrillation with minimal side effects.


Assuntos
Potenciais de Ação , Antiarrítmicos/farmacologia , Fibrilação Atrial/tratamento farmacológico , Benzopiranos/farmacologia , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/antagonistas & inibidores , Ativação do Canal Iônico , Animais , Antiarrítmicos/química , Benzopiranos/química , Humanos , Camundongos , Simulação de Acoplamento Molecular
4.
Arterioscler Thromb Vasc Biol ; 40(6): e138-e152, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32459541

RESUMO

In addition to the roles of endothelial cells (ECs) in physiological processes, ECs actively participate in both innate and adaptive immune responses. We previously reported that, in comparison to macrophages, a prototypic innate immune cell type, ECs have many innate immune functions that macrophages carry out, including cytokine secretion, phagocytic function, antigen presentation, pathogen-associated molecular patterns-, and danger-associated molecular patterns-sensing, proinflammatory, immune-enhancing, anti-inflammatory, immunosuppression, migration, heterogeneity, and plasticity. In this highlight, we introduce recent advances published in both ATVB and many other journals: (1) several significant characters classify ECs as novel immune cells not only in infections and allograft transplantation but also in metabolic diseases; (2) several new receptor systems including conditional danger-associated molecular pattern receptors, nonpattern receptors, and homeostasis associated molecular patterns receptors contribute to innate immune functions of ECs; (3) immunometabolism and innate immune memory determine the innate immune functions of ECs; (4) a great induction of the immune checkpoint receptors in ECs during inflammations suggests the immune tolerogenic functions of ECs; and (5) association of immune checkpoint inhibitors with cardiovascular adverse events and cardio-oncology indicates the potential contributions of ECs as innate immune cells.


Assuntos
Células Endoteliais/imunologia , Imunidade Inata/imunologia , Apresentação de Antígeno , Arteriosclerose/imunologia , Sistema Cardiovascular/imunologia , Citocinas/metabolismo , Humanos , Tolerância Imunológica , Memória Imunológica , Inflamação/imunologia , Macrófagos/imunologia , Obesidade Abdominal , Receptores Citoplasmáticos e Nucleares , Transdução de Sinais , Trombose/imunologia
5.
Int J Cancer ; 140(3): 653-661, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27770540

RESUMO

MicroRNA-9-1(miR-9-1) plays an important role in the mechanism that regulates the lineage fate of differentiating hematopoietic cells. Recent studies have shown that miR-9-1 is downregulated in t (8; 21) AML. However, the pathogenic mechanisms underlying miR-9-1 downregulation and the RUNX1-RUNX1T1 fusion protein, generated from the translocation of t (8; 21) in AML, remain unclear. RUNX1-RUNX1T1 can induce leukemogenesis through resides in and functions as a stable RUNX1-RUNX1T1-containing transcription factor complex. In this study, we demonstrate that miR-9-1 expression increases significantly after the treatment of RUNX1-RUNX1T1 (+) AML cell lines with decitabine (a DNMT inhibitor) and trichostatin A (an HDAC inhibitor). In addition, we show that RUNX1-RUNX1T1 triggers the heterochromatic silencing of miR-9-1 by binding to RUNX1-binding sites in the promoter region of miR-9-1 and recruiting chromatin-remodeling enzymes, DNMTs, and HDACs, contributing to hypermethylation of miR-9-1 in t (8; 21) AML. Furthermore, because RUNX1, RUNX1T1, and RUNX1-RUNX1T1 are all regulated by miR-9-1, the silencing of miR-9-1 enhances the oncogenic activity of these genes. Besides, overexpression of miR-9-1 induces differentiation and inhibits proliferation in t (8; 21) AML cell lines. In conclusion, our results indicate a feedback circuitry involving miR-9-1 and RUNX1-RUNX1T1, contributing to leukemogenesis in RUNX1-RUNX1T1 (+) AML cell lines.


Assuntos
Carcinogênese/genética , Carcinogênese/patologia , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , MicroRNAs/genética , Proteínas Proto-Oncogênicas/genética , Fatores de Transcrição/genética , Diferenciação Celular/genética , Linhagem Celular , Linhagem Celular Tumoral , Cromatina/genética , Cromossomos Humanos Par 8/genética , Metilação de DNA/genética , Regulação para Baixo/genética , Regulação Leucêmica da Expressão Gênica/genética , Células HEK293 , Humanos , Proteínas de Fusão Oncogênica/genética , Proteína 1 Parceira de Translocação de RUNX1 , Translocação Genética/genética , Células U937
6.
Cancer Sci ; 108(9): 1850-1857, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28670859

RESUMO

CPNE3, a member of a Ca2+ -dependent phospholipid-binding protein family, was identified as a ligand of ERBB2 and has a more general role in carcinogenesis. Here, we identified the prognostic significance of CPNE3 expression in acute myeloid leukemia (AML) patients based on two datasets. In the first microarray dataset (n = 272), compared to low CPNE3 expression (CPNE3low ), high CPNE3 expression (CPNE3high ) was associated with adverse overall survival (OS, P < 0.001) and event-free survival (EFS, P < 0.001). In the second independent group of AML patients (TCGA dataset, n = 179), CPNE3high was also associated with adverse OS and EFS (OS, P = 0.01; EFS, P = 0.036). Notably, among CPNE3high patients, those received allogenic hematopoietic cell transplantation (HCT) had longer OS and EFS than those with chemotherapy alone (allogeneic HCT, n = 40 vs chemotherapy, n = 46), but treatment modules played an insignificant role in the survival of CPNE3low patients (allogeneic HCT, n = 32 vs chemotherapy, n = 54). These results indicated that CPNE3high is an independent, adverse prognostic factor in AML and might guide treatment decisions towards allogeneic HCT. To understand its inherent mechanisms, we investigated genome-wide gene/microRNA expression signatures and cell signaling pathways associated with CPNE3 expression. In conclusion, CPNE3high is an adverse prognostic biomarker for AML. Its effect may be attributed to the distinctive genome-wide gene/microRNA expression and related cell signaling pathways.


Assuntos
Biomarcadores Tumorais/metabolismo , Leucemia Mieloide Aguda/metabolismo , Fosfoproteínas/metabolismo , Adolescente , Adulto , Biomarcadores Tumorais/genética , Intervalo Livre de Doença , Feminino , Humanos , Estimativa de Kaplan-Meier , Leucemia Mieloide Aguda/mortalidade , Leucemia Mieloide Aguda/patologia , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Fosfoproteínas/genética , Prognóstico , Transcriptoma , Adulto Jovem
7.
J Transl Med ; 15(1): 159, 2017 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28724426

RESUMO

BACKGROUND: ETS2 is a downstream effector of the RAS/RAF/ERK pathway, which plays a critical role in the development of malignant tumor. However, the clinical impact of ETS2 expression in AML remains unknown. METHODS: In this study, we evaluated the prognostic significance of ETS2 expression using two relatively large cohorts of AML patients. RESULTS: In the first cohort, compared to low expression of ETS2 (ETS2 low), high expression of ETS2 (ETS2 high) showed significant shorter OS, EFS and RFS in the current treatments including the allogeneic HCT group (n = 72) and the chemotherapy group (n = 100). Notably, among ETS2 high patients, those received allogeneic HCT had longer OS, EFS and RFS than those with chemotherapy alone (allogeneic HCT, n = 39 vs. chemotherapy, n = 47), but treatment modules play insignificant role in the survival of ETS2 low patients (allogeneic HCT, n = 33 vs. chemotherapy, n = 53). Moreover, gene/microRNA expression data provides insights into the biological changes associated with varying ETS2 expression levels in AML. The prognostic value of ETS2 was further validated in the second AML cohort (n = 329). CONCLUSIONS: Our results indicate that ETS2 high is a poor prognostic factor in AML and may guide treatment decisions towards allogeneic HCT.


Assuntos
Tomada de Decisão Clínica , Leucemia Mieloide Aguda/metabolismo , Proteína Proto-Oncogênica c-ets-2/metabolismo , Biomarcadores Tumorais/metabolismo , Estudos de Casos e Controles , Estudos de Coortes , Intervalo Livre de Doença , Feminino , Perfilação da Expressão Gênica , Regulação Leucêmica da Expressão Gênica , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Prognóstico
8.
Can J Physiol Pharmacol ; 95(3): 247-252, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27925481

RESUMO

Mitochondrial reactive oxygen species (mtROS) are signaling molecules, which drive inflammatory cytokine production and T cell activation. In addition, cardiovascular diseases, cancers, and autoimmune diseases all share a common feature of increased mtROS level. Both mtROS and ATP are produced as a result of electron transport chain activity, but it remains enigmatic whether mtROS could be generated independently from ATP synthesis. A recent study shed light on this important question and found that, during endothelial cell (EC) activation, mtROS could be upregulated in a proton leak-coupled, but ATP synthesis-uncoupled manner. As a result, EC could upregulate mtROS production for physiological EC activation without compromising mitochondrial membrane potential and ATP generation, and consequently without causing mitochondrial damage and EC death. Thus, a novel pathophysiological role of proton leak in driving mtROS production was uncovered for low grade EC activation, patrolling immunosurveillance cell trans-endothelial migration and other signaling events without compromising cellular survival. This new working model explains how mtROS could be increasingly generated independently from ATP synthesis and endothelial damage or death. Mapping the connections among mitochondrial metabolism, physiological EC activation, patrolling cell migration, and pathological inflammation is significant towards the development of novel therapies for inflammatory diseases and cancers.


Assuntos
Trifosfato de Adenosina/metabolismo , Doenças Cardiovasculares/metabolismo , Endotélio Vascular/metabolismo , Metabolismo Energético , Inflamação/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Animais , Doenças Cardiovasculares/patologia , Doenças Cardiovasculares/fisiopatologia , Endotélio Vascular/patologia , Endotélio Vascular/fisiopatologia , Humanos , Inflamação/patologia , Inflamação/fisiopatologia , Mediadores da Inflamação/metabolismo , Potencial da Membrana Mitocondrial , Mitocôndrias/patologia , Migração Transendotelial e Transepitelial
9.
Pharmacol Ther ; 255: 108604, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38360205

RESUMO

The endoplasmic reticulum (ER) is a cellular organelle that is physiologically responsible for protein folding, calcium homeostasis, and lipid biosynthesis. Pathological stimuli such as oxidative stress, ischemia, disruptions in calcium homeostasis, and increased production of normal and/or folding-defective proteins all contribute to the accumulation of misfolded proteins in the ER, causing ER stress. The adaptive response to ER stress is the activation of unfolded protein response (UPR), which affect a wide variety of cellular functions to maintain ER homeostasis or lead to apoptosis. Three different ER transmembrane sensors, including PKR-like ER kinase (PERK), activating transcription factor 6 (ATF6), and inositol-requiring enzyme-1 (IRE1), are responsible for initiating UPR. The UPR involves a variety of signal transduction pathways that reduce unfolded protein accumulation by boosting ER-resident chaperones, limiting protein translation, and accelerating unfolded protein degradation. ER is now acknowledged as a critical organelle in sensing dangers and determining cell life and death. On the other hand, UPR plays a critical role in the development and progression of several diseases such as cardiovascular diseases (CVD), metabolic disorders, chronic kidney diseases, neurological disorders, and cancer. Here, we critically analyze the most current knowledge of the master regulatory roles of ER stress particularly the PERK pathway as a conditional danger receptor, an organelle crosstalk regulator, and a regulator of protein translation. We highlighted that PERK is not only ER stress regulator by sensing UPR and ER stress but also a frontier sensor and direct senses for gut microbiota-generated metabolites. Our work also further highlighted the function of PERK as a central hub that leads to metabolic reprogramming and epigenetic modification which further enhanced inflammatory response and promoted trained immunity. Moreover, we highlighted the contribution of ER stress and PERK in the pathogenesis of several diseases such as cancer, CVD, kidney diseases, and neurodegenerative disorders. Finally, we discuss the therapeutic target of ER stress and PERK for cancer treatment and the potential novel therapeutic targets for CVD, metabolic disorders, and neurodegenerative disorders. Inhibition of ER stress, by the development of small molecules that target the PERK and UPR, represents a promising therapeutic strategy.


Assuntos
Doenças Cardiovasculares , Microbioma Gastrointestinal , Doenças Metabólicas , Neoplasias , Doenças Neurodegenerativas , Humanos , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo , Cálcio/metabolismo , Resposta a Proteínas não Dobradas , Estresse do Retículo Endoplasmático , Doenças Neurodegenerativas/tratamento farmacológico , Doença Crônica , Doenças Cardiovasculares/tratamento farmacológico , Imunidade , Alimentos Marinhos , Neoplasias/tratamento farmacológico
10.
Redox Biol ; 64: 102771, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37364513

RESUMO

To identify metabolomic reprogramming in early hyperlipidemia, unbiased metabolome was screened in four tissues from ApoE-/- mice fed with high fat diet (HFD) for 3 weeks. 30, 122, 67, and 97 metabolites in the aorta, heart, liver, and plasma, respectively, were upregulated. 9 upregulated metabolites were uremic toxins, and 13 metabolites, including palmitate, promoted a trained immunity with increased syntheses of acetyl-CoA and cholesterol, increased S-adenosylhomocysteine (SAH) and hypomethylation and decreased glycolysis. The cross-omics analysis found upregulation of 11 metabolite synthetases in ApoE‾/‾ aorta, which promote ROS, cholesterol biosynthesis, and inflammation. Statistical correlation of 12 upregulated metabolites with 37 gene upregulations in ApoE‾/‾ aorta indicated 9 upregulated new metabolites to be proatherogenic. Antioxidant transcription factor NRF2-/- transcriptome analysis indicated that NRF2 suppresses trained immunity-metabolomic reprogramming. Our results have provided novel insights on metabolomic reprogramming in multiple tissues in early hyperlipidemia oriented toward three co-existed new types of trained immunity.


Assuntos
Hiperlipidemias , Camundongos , Animais , Hiperlipidemias/genética , Acetilcoenzima A , S-Adenosil-Homocisteína , Fator 2 Relacionado a NF-E2 , Colesterol , Dieta Hiperlipídica/efeitos adversos , Apolipoproteínas E/genética , Glicólise
11.
Cells ; 12(11)2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37296603

RESUMO

Most patients with end-stage renal disease (ESRD) and advanced chronic kidney disease (CKD) choose hemodialysis as their treatment of choice. Thus, upper-extremity veins provide a functioning arteriovenous access to reduce dependence on central venous catheters. However, it is unknown whether CKD reprograms the transcriptome of veins and primes them for arteriovenous fistula (AVF) failure. To examine this, we performed transcriptomic analyses of bulk RNA sequencing data of veins isolated from 48 CKD patients and 20 non-CKD controls and made the following findings: (1) CKD converts veins into immune organs by upregulating 13 cytokine and chemokine genes, and over 50 canonical and noncanonical secretome genes; (2) CKD increases innate immune responses by upregulating 12 innate immune response genes and 18 cell membrane protein genes for increased intercellular communication, such as CX3CR1 chemokine signaling; (3) CKD upregulates five endoplasmic reticulum protein-coding genes and three mitochondrial genes, impairing mitochondrial bioenergetics and inducing immunometabolic reprogramming; (4) CKD reprograms fibrogenic processes in veins by upregulating 20 fibroblast genes and 6 fibrogenic factors, priming the vein for AVF failure; (5) CKD reprograms numerous cell death and survival programs; (6) CKD reprograms protein kinase signal transduction pathways and upregulates SRPK3 and CHKB; and (7) CKD reprograms vein transcriptomes and upregulates MYCN, AP1, and 11 other transcription factors for embryonic organ development, positive regulation of developmental growth, and muscle structure development in veins. These results provide novel insights on the roles of veins as immune endocrine organs and the effect of CKD in upregulating secretomes and driving immune and vascular cell differentiation.


Assuntos
Derivação Arteriovenosa Cirúrgica , Insuficiência Renal Crônica , Humanos , Proteína Proto-Oncogênica N-Myc/metabolismo , Derivação Arteriovenosa Cirúrgica/métodos , Veias , Insuficiência Renal Crônica/metabolismo , Transdução de Sinais
12.
Front Immunol ; 14: 1268916, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37731512

RESUMO

To determine the roles of endoplasmic reticulum (ER) stress and trained immunity, we performed transcriptome analyses on the thoracic aorta (TA) and abdominal aorta (AA) from the angiotensin II (Ang II)-HFD-ApoE-KO aneurysm model and made significant findings: 1) Ang II bypassed HFD-induced metabolic reprogramming and induced stronger inflammation in AA than in TA; 2) Ang II and HFD upregulated 890 genes in AA versus TA and induced cytokine signaling; 3) Ang II AA and TA upregulated 73 and 68 cytokines, scRNA-Seq identified markers of macrophages and immune cells, cell death regulators, respectively; transdifferentiation markers of neuron, glial, and squamous epithelial cells were upregulated by Ang II-AA and TA; and pyroptosis signaling with IL-1ß and caspase-4 were more upregulated in Ang II-AA than in TA; 4) Six upregulated transcriptomes in patients with AAA, Ang II AA, Ang II TA, additional aneurysm models, PPE-AAA and BAPN-Ang II-AAA, were partially overlapped with 10 lists of new ER stress gene sets including 3 interaction protein lists of ER stress regulators ATF6, PERK, and IRE1, HPA ER localization genes, KEGG signal genes, XBP1 transcription targets, ATF4 (PERK) targets, ATF6 targets, thapsigargin ER stress genes, tunicamycin-ER stress genes, respectively; 5) Ang II-AA and TA upregulated ROS regulators, MitoCarta genes, trained immunity genes, and glycolysis genes; and 6) Gene KO transcriptomes indicated that ATF6 and PERK played more significant roles than IRE1 in promoting AAA and trained immunity whereas antioxidant NRF2 inhibited them. Our unprecedented ER-focused transcriptomic analyses have provided novel insights on the roles of ER as an immune organelle in sensing various DAMPs and initiating ER stress that triggers Ang II-accelerated trained immunity and differs susceptibilities of thoracic and abdominal aortas to diseases.


Assuntos
Aneurisma , Aorta Abdominal , Humanos , Angiotensina II/farmacologia , Suscetibilidade a Doenças , Imunidade Inata , Proteínas Serina-Treonina Quinases
13.
Front Immunol ; 14: 1113883, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36776889

RESUMO

Introduction: Non-alcoholic fatty liver disease (NAFLD) has a global prevalence of 25% of the population and is a leading cause of cirrhosis and hepatocellular carcinoma. NAFLD ranges from simple steatosis (non-alcoholic fatty liver) to non-alcoholic steatohepatitis (NASH). Hepatic macrophages, specifically Kupffer cells (KCs) and monocyte-derived macrophages, act as key players in the progression of NAFLD. Caspases are a family of endoproteases that provide critical connections to cell regulatory networks that sense disease risk factors, control inflammation, and mediate inflammatory cell death (pyroptosis). Caspase-11 can cleave gasdermin D (GSDMD) to induce pyroptosis and specifically defends against bacterial pathogens that invade the cytosol. However, it's still unknown whether high fat diet (HFD)-facilitated gut microbiota-generated cytoplasmic lipopolysaccharides (LPS) activate caspase-11 and promote NAFLD. Methods: To examine this hypothesis, we performed liver pathological analysis, RNA-seq, FACS, Western blots, Seahorse mitochondrial stress analyses of macrophages and bone marrow transplantation on HFD-induced NAFLD in WT and Casp11-/- mice. Results and Discussion: Our results showed that 1) HFD increases body wight, liver wight, plasma cholesterol levels, liver fat deposition, and NAFLD activity score (NAS score) in wild-type (WT) mice; 2) HFD increases the expression of caspase-11, GSDMD, interleukin-1ß, and guanylate-binding proteins in WT mice; 3) Caspase-11 deficiency decreases fat liver deposition and NAS score; 4) Caspase-11 deficiency decreases bone marrow monocyte-derived macrophage (MDM) pyroptosis (inflammatory cell death) and inflammatory monocyte (IM) surface GSDMD expression; 5) Caspase-11 deficiency re-programs liver transcriptomes and reduces HFD-induced NAFLD; 6) Caspase-11 deficiency decreases extracellular acidification rates (glycolysis) and oxidative phosphorylation (OXPHOS) in inflammatory fatty acid palmitic acid-stimulated macrophages, indicating that caspase-11 significantly contributes to maintain dual fuel bioenergetics-glycolysis and OXPHOS for promoting pyroptosis in macrophages. These results provide novel insights on the roles of the caspase-11-GSDMD pathway in promoting hepatic macrophage inflammation and pyroptosis and novel targets for future therapeutic interventions involving the transition of NAFLD to NASH, hyperlipidemia, type II diabetes, metabolic syndrome, metabolically healthy obesity, atherosclerotic cardiovascular diseases, autoimmune diseases, liver transplantation, and hepatic cancers.


Assuntos
Diabetes Mellitus Tipo 2 , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/patologia , Dieta Hiperlipídica/efeitos adversos , Caspases/metabolismo , Piroptose , Fosforilação Oxidativa , Diabetes Mellitus Tipo 2/metabolismo , Macrófagos , Inflamação/metabolismo , Glicólise
14.
JCI Insight ; 8(1)2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36394956

RESUMO

We determined whether gut microbiota-produced trimethylamine (TMA) is oxidized into trimethylamine N-oxide (TMAO) in nonliver tissues and whether TMAO promotes inflammation via trained immunity (TI). We found that endoplasmic reticulum (ER) stress genes were coupregulated with MitoCarta genes in chronic kidney diseases (CKD); TMAO upregulated 190 genes in human aortic endothelial cells (HAECs); TMAO synthesis enzyme flavin-containing monooxygenase 3 (FMO3) was expressed in human and mouse aortas; TMAO transdifferentiated HAECs into innate immune cells; TMAO phosphorylated 12 kinases in cytosol via its receptor PERK and CREB, and integrated with PERK pathways; and PERK inhibitors suppressed TMAO-induced ICAM-1. TMAO upregulated 3 mitochondrial genes, downregulated inflammation inhibitor DARS2, and induced mitoROS, and mitoTEMPO inhibited TMAO-induced ICAM-1. ß-Glucan priming, followed by TMAO restimulation, upregulated TNF-α by inducing metabolic reprogramming, and glycolysis inhibitor suppressed TMAO-induced ICAM-1. Our results have provided potentially novel insights regarding TMAO roles in inducing EC activation and innate immune transdifferentiation and inducing metabolic reprogramming and TI for enhanced vascular inflammation, and they have provided new therapeutic targets for treating cardiovascular diseases (CVD), CKD-promoted CVD, inflammation, transplantation, aging, and cancer.


Assuntos
Doenças Cardiovasculares , Insuficiência Renal Crônica , Humanos , Camundongos , Animais , Espécies Reativas de Oxigênio/metabolismo , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Células Endoteliais , Imunidade Treinada , Fígado/metabolismo , Inflamação/metabolismo , Doenças Cardiovasculares/metabolismo , Aorta , Insuficiência Renal Crônica/metabolismo
15.
Front Immunol ; 14: 1348238, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38327764

RESUMO

Introduction: Vascular smooth muscle cells (VSMCs) are the predominant cell type in the medial layer of the aorta, which plays a critical role in aortic diseases. Innate immunity is the main driving force for cardiovascular diseases. Methods: To determine the roles of innate immunity in VSMC and aortic pathologies, we performed transcriptome analyses on aortas from ApoE-/- angiotensin II (Ang II)-induced aortic aneurysm (AAA) time course, and ApoE-/- atherosclerosis time course, as well as VSMCs stimulated with danger-associated molecular patterns (DAMPs). Results: We made significant findings: 1) 95% and 45% of the upregulated innate immune pathways (UIIPs, based on data of 1226 innate immune genes) in ApoE-/- Ang II-induced AAA at 7 days were different from that of 14 and 28 days, respectively; and AAA showed twin peaks of UIIPs with a major peak at 7 days and a minor peak at 28 days; 2) all the UIIPs in ApoE-/- atherosclerosis at 6 weeks were different from that of 32 and 78 weeks (two waves); 3) analyses of additional 12 lists of innate immune-related genes with 1325 cytokine and chemokine genes, 2022 plasma membrane protein genes, 373 clusters of differentiation (CD) marker genes, 280 nuclear membrane protein genes, 1425 nucleoli protein genes, 6750 nucleoplasm protein genes, 1496 transcription factors (TFs) including 15 pioneer TFs, 164 histone modification enzymes, 102 oxidative cell death genes, 68 necrotic cell death genes, and 47 efferocytosis genes confirmed two-wave inflammation in atherosclerosis and twin-peak inflammation in AAA; 4) DAMPs-stimulated VSMCs were innate immune cells as judged by the upregulation of innate immune genes and genes from 12 additional lists; 5) DAMPs-stimulated VSMCs increased trans-differentiation potential by upregulating not only some of 82 markers of 7 VSMC-plastic cell types, including fibroblast, osteogenic, myofibroblast, macrophage, adipocyte, foam cell, and mesenchymal cell, but also 18 new cell types (out of 79 human cell types with 8065 cell markers); 6) analysis of gene deficient transcriptomes indicated that the antioxidant transcription factor NRF2 suppresses, however, the other five inflammatory transcription factors and master regulators, including AHR, NF-KB, NOX (ROS enzyme), PERK, and SET7 promote the upregulation of twelve lists of innate immune genes in atherosclerosis, AAA, and DAMP-stimulated VSMCs; and 7) both SET7 and trained tolerance-promoting metabolite itaconate contributed to twin-peak upregulation of cytokines in AAA. Discussion: Our findings have provided novel insights on the roles of innate immune responses and nuclear stresses in the development of AAA, atherosclerosis, and VSMC immunology and provided novel therapeutic targets for treating those significant cardiovascular and cerebrovascular diseases.


Assuntos
Aneurisma da Aorta Abdominal , Aneurisma Aórtico , Aterosclerose , Humanos , Músculo Liso Vascular/metabolismo , Aneurisma da Aorta Abdominal/metabolismo , Inflamação/metabolismo , NF-kappa B/metabolismo , Imunidade Inata , Transdiferenciação Celular , Aterosclerose/metabolismo , Apolipoproteínas E/genética
16.
Cells ; 11(18)2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-36139385

RESUMO

CD4+ regulatory T cells (Tregs) respond to environmental cues to permit or suppress inflammation, and atherosclerosis weakens Treg suppression and promotes plasticity. However, the effects of smoking plus morphine (SM + M) on Treg plasticity remain unknown. To determine whether SM + M promotes Treg plasticity to T helper 17 (Th17) cells, we analyzed the RNA sequencing data from SM, M, and SM + M treated Tregs and performed knowledge-based and IPA analysis. We demonstrated that (1) SM + M, M, and SM upregulated the transcripts of cytokines, chemokines, and clusters of differentiation (CDs) and modulated the transcripts of kinases and phosphatases in Tregs; (2) SM + M, M, and SM upregulated the transcripts of immunometabolism genes, trained immunity genes, and histone modification enzymes; (3) SM + M increased the transcripts of Th17 transcription factor (TF) RORC and Tfh factor CXCR5 in Tregs; M increased the transcripts of T helper cell 1 (Th1) TF RUNX3 and Th1-Th9 receptor CXCR3; and SM inhibited Treg TGIF1 transcript; (4) six genes upregulated in SM + M Tregs were matched with the top-ranked Th17 pathogenic genes; and 57, 39 genes upregulated in SM + M Tregs were matched with groups II and group III Th17 pathogenic genes, respectively; (5) SM + M upregulated the transcripts of 70 IPA-TFs, 11 iTregs-specific TFs, and 4 iTregs-Th17 shared TFs; and (6) SM + M, M, and SM downregulated Treg suppression TF Rel (c-Rel); and 35 SM + M downregulated genes were overlapped with Rel-/- Treg downregulated genes. These results provide novel insights on the roles of SM + M in reprogramming Treg transcriptomes and Treg plasticity to Th17 cells and novel targets for future therapeutic interventions involving immunosuppression in atherosclerotic cardiovascular diseases, autoimmune diseases, transplantation, and cancers.


Assuntos
Aterosclerose , Fumar Cigarros , Citocinas , Proteínas de Homeodomínio , Humanos , Morfina , Monoéster Fosfórico Hidrolases , Proteínas Repressoras , Fumar , Linfócitos T Reguladores , Células Th17 , Fatores de Transcrição
17.
Front Immunol ; 13: 887681, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35514978

RESUMO

There is a high incidence of tobacco use among intravenous opioid drug users. It is well established that opioids and tobacco smoke induce a degree of immune activation, and recent work suggests that the combination of these drugs promotes further activation of the immune system. Our approach involved the treatment of wild-type mice with cigarette smoke (SM) for a period of eight weeks, and the chronic continuous administration of morphine (M) via mini-pumps for the final four weeks. In an effort to examine the responses of CD4+CD25highCD127low regulatory T (Treg) cells, the major immune suppressive cell type, to the combined chronic administration of SM and M, we determined the frequency of these cells in the spleen, lymph nodes and lungs. Flow cytometric analyses showed that SM and M individually, and the combination (SM + M) have differential effects on the numbers of Treg in the spleen, lymph node, and lung. Either SM or M alone increased Treg cell numbers in the spleen, but SM+M did not. Furthermore, SM + M decreased Treg cell numbers in the lymph node and lung. We then performed RNA-Seq on Treg cells from mice treated with SM, M, or SM + M, and we found that the S + M induced a number of significant changes in the transcriptome, that were not as apparent following treatment with either SM or M alone. This included an activation of TWEAK, PI3K/AKT and OXPHOS pathways and a shift to Th17 immunity. Our results have provided novel insights on tissue Treg cell changes, which we suggest are the result of transcriptomic reprogramming induced by SM, M, and SM + M, respectively. We believe these results may lead to the identification of novel therapeutic targets for suppressing smoke and opioid induced Treg cell impairment.


Assuntos
Fumar Cigarros , Linfócitos T Reguladores , Analgésicos Opioides/farmacologia , Animais , Camundongos , Morfina/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Transcriptoma
18.
J Immunol Res ; 2022: 1433323, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35211628

RESUMO

We performed a database mining on 102 transcriptomic datasets for the expressions of 29 m6A-RNA methylation (epitranscriptomic) regulators (m6A-RMRs) in 41 diseases and cancers and made significant findings: (1) a few m6A-RMRs were upregulated; and most m6A-RMRs were downregulated in sepsis, acute respiratory distress syndrome, shock, and trauma; (2) half of 29 m6A-RMRs were downregulated in atherosclerosis; (3) inflammatory bowel disease and rheumatoid arthritis modulated m6A-RMRs more than lupus and psoriasis; (4) some organ failures shared eight upregulated m6A-RMRs; end-stage renal failure (ESRF) downregulated 85% of m6A-RMRs; (5) Middle-East respiratory syndrome coronavirus infections modulated m6A-RMRs the most among viral infections; (6) proinflammatory oxPAPC modulated m6A-RMRs more than DAMP stimulation including LPS and oxLDL; (7) upregulated m6A-RMRs were more than downregulated m6A-RMRs in cancer types; five types of cancers upregulated ≥10 m6A-RMRs; (8) proinflammatory M1 macrophages upregulated seven m6A-RMRs; (9) 86% of m6A-RMRs were differentially expressed in the six clusters of CD4+Foxp3+ immunosuppressive Treg, and 8 out of 12 Treg signatures regulated m6A-RMRs; (10) immune checkpoint receptors TIM3, TIGIT, PD-L2, and CTLA4 modulated m6A-RMRs, and inhibition of CD40 upregulated m6A-RMRs; (11) cytokines and interferons modulated m6A-RMRs; (12) NF-κB and JAK/STAT pathways upregulated more than downregulated m6A-RMRs whereas TP53, PTEN, and APC did the opposite; (13) methionine-homocysteine-methyl cycle enzyme Mthfd1 downregulated more than upregulated m6A-RMRs; (14) m6A writer RBM15 and one m6A eraser FTO, H3K4 methyltransferase MLL1, and DNA methyltransferase, DNMT1, regulated m6A-RMRs; and (15) 40 out of 165 ROS regulators were modulated by m6A eraser FTO and two m6A writers METTL3 and WTAP. Our findings shed new light on the functions of upregulated m6A-RMRs in 41 diseases and cancers, nine cellular and molecular mechanisms, novel therapeutic targets for inflammatory disorders, metabolic cardiovascular diseases, autoimmune diseases, organ failures, and cancers.


Assuntos
Aterosclerose/genética , Epigênese Genética , Neoplasias/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Doenças Autoimunes/genética , Conjuntos de Dados como Assunto , Perfilação da Expressão Gênica , Humanos , Inflamação/genética , Doenças Metabólicas/genética , Metilação
19.
Methods Mol Biol ; 2419: 169-182, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35237964

RESUMO

Monocyte adhesion assay, a fluorescence-based method, enables the detection and quantification of monocyte adhesion to endothelial cell (EC) monolayers in vitro and measures EC activation. We describe in this chapter a monocyte adhesion assay based on two published papers from our laboratory that can be effectively used in studying the mechanisms of both pro- and anti-inflammatory cytokines in EC activation. Endothelial cell monolayers are cultured and treated with desired drug, cytokines, or other stimuli and incubated with fluorescently labeled monocytes.


Assuntos
Aterosclerose , Monócitos , Aterosclerose/metabolismo , Adesão Celular , Células Cultivadas , Células Endoteliais , Endotélio Vascular/metabolismo , Humanos , Inflamação/metabolismo , Monócitos/metabolismo
20.
Front Immunol ; 13: 858256, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35320939

RESUMO

To determine whether aorta becomes immune organ in pathologies, we performed transcriptomic analyses of six types of secretomic genes (SGs) in aorta and vascular cells and made the following findings: 1) 53.7% out of 21,306 human protein genes are classified into six secretomes, namely, canonical, caspase 1, caspase 4, exosome, Weibel-Palade body, and autophagy; 2) Atherosclerosis (AS), chronic kidney disease (CKD) and abdominal aortic aneurysm (AAA) modulate six secretomes in aortas; and Middle East Respiratory Syndrome Coronavirus (MERS-CoV, COVID-19 homologous) infected endothelial cells (ECs) and angiotensin-II (Ang-II) treated vascular smooth muscle cells (VSMCs) modulate six secretomes; 3) AS aortas upregulate T and B cell immune SGs; CKD aortas upregulate SGs for cardiac hypertrophy, and hepatic fibrosis; and AAA aorta upregulate SGs for neuromuscular signaling and protein catabolism; 4) Ang-II induced AAA, canonical, caspase 4, and exosome SGs have two expression peaks of high (day 7)-low (day 14)-high (day 28) patterns; 5) Elastase induced AAA aortas have more inflammatory/immune pathways than that of Ang-II induced AAA aortas; 6) Most disease-upregulated cytokines in aorta may be secreted via canonical and exosome secretomes; 7) Canonical and caspase 1 SGs play roles at early MERS-CoV infected ECs whereas caspase 4 and exosome SGs play roles in late/chronic phases; and the early upregulated canonical and caspase 1 SGs may function as drivers for trained immunity (innate immune memory); 8) Venous ECs from arteriovenous fistula (AVF) upregulate SGs in five secretomes; and 9) Increased some of 101 trained immunity genes and decreased trained tolerance regulator IRG1 participate in upregulations of SGs in atherosclerotic, Ang-II induced AAA and CKD aortas, and MERS-CoV infected ECs, but less in SGs upregulated in AVF ECs. IL-1 family cytokines, HIF1α, SET7 and mTOR, ROS regulators NRF2 and NOX2 partially regulate trained immunity genes; and NRF2 plays roles in downregulating SGs more than that of NOX2 in upregulating SGs. These results provide novel insights on the roles of aorta as immune organ in upregulating secretomes and driving immune and vascular cell differentiations in COVID-19, cardiovascular diseases, inflammations, transplantations, autoimmune diseases and cancers.


Assuntos
COVID-19 , Coronavírus da Síndrome Respiratória do Oriente Médio , Insuficiência Renal Crônica , Angiotensina II , Aorta , COVID-19/genética , Caspase 1 , Diferenciação Celular , Transdiferenciação Celular , Citocinas , Células Endoteliais , Humanos , Fator 2 Relacionado a NF-E2 , Secretoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA