Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Carcinog ; 62(11): 1659-1672, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37449799

RESUMO

Colorectal cancer (CRC) is one of the most common malignant tumors. Approximately 5%-6% of CRC cases are associated with hereditary CRC syndromes, including the Peutz-Jeghers syndrome (PJS). Liver kinase B1 (LKB1), also known as STK11, is the major gene responsible for PJS. LKB1 heterozygotic deficiency is involved in intestinal polyps in mice, while the mechanism of LKB1 in CRC remains elusive. In this study, we generated LKB1 knockout (KO) CRC cell lines by using CRISPR-Cas9. LKB1 KO promoted CRC cell motility in vitro and tumor metastases in vivo. LKB1 attenuated expression of TRAF2 and NCK-interacting protein kinase (TNIK) as accessed by RNA-seq and western blots, and similar suppression was also detected in the tumor tissues of azoxymethane/dextran sodium sulfate-induced intestinal-specific LKB1-KO mice. LKB1 repressed TNIK expression through its kinase activity. Moreover, attenuating TNIK by shRNA inhibited cell migration and invasion of CRC cells. LKB1 loss-induced high metastatic potential of CRC cells was depended on TNIK upregulation. Furthermore, TNIK interacted with ARHGAP29 and further affected actin cytoskeleton remodeling. Taken together, LKB1 deficiency promoted CRC cell metastasis via TNIK upregulation and subsequently mediated cytoskeleton remodeling. These results suggest that LKB1-TNIK axis may play a crucial role in CRC progression.

2.
Cell Biol Int ; 47(2): 492-501, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36317450

RESUMO

The tumorigenesis and progression of colorectal cancer are closely related to the tumor microenvironment, especially inflammatory response. Inhibitors of histone deacetylase (HDAC) have been reported as epigenetic regulators of the immune system to treat cancer and inflammatory diseases and our results demonstrated that Celastrol could act as a new HDAC inhibitor. Considering macrophages as important members of the tumor microenvironment, we further found that Celastrol could influence the polarization of macrophages to inhibit colorectal cancer cell growth. Specially, we used the supernatant of HCT116 and SW480 cells to induce Ana-1 cells in vitro and chose the spontaneous colorectal cancer model APCmin/+ mice as an animal model to validate in vivo. The results indicated that Celastrol could reverse the polarization of macrophages from M2 to M1 through impacting the colorectal tumor microenvironment both in vitro and in vivo. Furthermore, using bioinformatics analysis, we found that Celastrol might mechanistically polarize the macrophages through MAPK signaling pathway. In conclusion, our findings identified that Celastrol as a new HDAC inhibitor and suggested that Celastrol could modulate macrophage polarization, thus inhibiting colorectal cancer growth, which may provide some novel therapeutic strategies for colorectal cancer.


Assuntos
Neoplasias Colorretais , Inibidores de Histona Desacetilases , Camundongos , Animais , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/metabolismo , Macrófagos/metabolismo , Triterpenos Pentacíclicos/metabolismo , Neoplasias Colorretais/metabolismo , Transformação Celular Neoplásica/metabolismo , Polaridade Celular , Microambiente Tumoral
3.
Tob Control ; 32(2): 163-169, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-34725269

RESUMO

BACKGROUND: China is experiencing a postpeak smoking epidemic with accelerating population ageing. Understanding the impacts of these factors on the future cancer burden has widespread implications. METHODS: We developed predictive models to estimate smoking-related cancer deaths among men and women aged ≥35 years in China during 2020-2040. Data sources for model parameters included the United Nations World Population Prospects, China Death Surveillance Database, national adult tobacco surveys and the largest national survey of smoking and all causes of death to date. The main assumptions included stable sex-specific and age-specific cancer mortality rates and carcinogenic risks of smoking over time. RESULTS: In a base-case scenario of continuing trends in current smoking prevalence (men: 57.4%-50.5%; women: 2.6%-2.1% during 2002-2018), the smoking-related cancer mortality rate with population ageing during 2020-2040 would rise by 44.0% (from 337.2/100 000 to 485.6/100 000) among men and 52.8% (from 157.3/100 000 to 240.4/100 000) among women; over 20 years, there would be 8.6 million excess deaths (0.5 million more considering former smoking), and a total of 117.3 million smoking-attributable years of life lost (110.3 million (94.0%) in men; 54.1 million (46.1%) in working-age (35-64 years) adults). An inflection point may occur in 2030 if smoking prevalence were reduced to 20% (Healthy China 2030 goal), and 1.4 million deaths would be averted relative to the base-case scenario if the trend were maintained through 2040. CONCLUSIONS: Coordinated efforts are urgently needed to curtail a rising tide of cancer deaths in China, with intensified tobacco control being key.


Assuntos
Neoplasias , Fumar , Adulto , Masculino , Humanos , Feminino , Fumar/efeitos adversos , Fumar/epidemiologia , Prevalência , Fumar Tabaco , Neoplasias/epidemiologia , Neoplasias/etiologia , Envelhecimento , China/epidemiologia
4.
Carcinogenesis ; 43(11): 1039-1049, 2022 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-36346184

RESUMO

Older age is a major risk factor for colorectal cancer. Macrophage is one of the most abundant immune cell types infiltrated in colorectal cancer, but the contribution of macrophages in elder tumor microenvironment is far from clear. In this study, we first detected the expression of CD206, CD68 in colorectal cancer tissues by multiplex fluorescence immunohistochemical staining. The infiltration of CD68+/CD206+ cells in tumor tissues from old patients was higher than those from young patients. When mixed with CT26 cells, both young and aged TAMs enhanced tumor growth of CT26 cells, but CT26 mixed with aged TAMs form larger tumors compared with young TAMs. CT26 formed more and larger tumors in the abdominal cavity of aged mice compared with young. Total macrophage infiltration and the CD206+ macrophages infiltration were both higher in aged mice compared with young mice. The expression signatures of tumor-associated macrophages altered with ageing and p-NF-κB translocation to nucleus was more significant in TAMs from aged mice compared with young. Our results showed that infiltration of macrophages in colorectal cancer tissues increased with ageing. Macrophages from aged host were more likely to polarize to pro-tumor phenotype, and more powerful in promoting tumor cell proliferation.


Assuntos
Neoplasias Colorretais , Macrófagos , Animais , Camundongos , Macrófagos/metabolismo , Neoplasias Colorretais/patologia , Carcinogênese/patologia , Microambiente Tumoral
5.
BMC Med ; 20(1): 55, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35130902

RESUMO

BACKGROUND: Metastatic cervical squamous cell carcinoma (CSCC) has poor prognosis and is recalcitrant to the current treatment strategies, which warrants the necessity to identify novel prognostic markers and therapeutic targets. Given that CSCC is a virus-induced malignancy, we hypothesized that the pattern recognition receptors (PRRs) involved in the innate immune response likely play a critical role in tumor development. METHODS: A bioinformatics analysis, qPCR, IHC, immunofluorescence, and WB were performed to determine the expression of NOD1/NOD2. The biological characteristics of overexpression NOD1 or NOD2 CSCC cells were compared to parental cells: proliferation, migration/invasion and cytokines secretion were examined in vitro through CCK8/colony formation/cell cycle profiling/cell counting, wound healing/transwell, and ELISA assays, respectively. The proliferative and metastatic capacity of overexpression NOD1 or NOD2 CSCC cells were also evaluated in vivo. FCM, mRNA and protein arrays, ELISA, and WB were used to identify the mechanisms involved, while novel pharmacological treatment were evaluated in vitro and in vivo. Quantitative variables between two groups were compared by Student's t test (normal distribution) or Mann-Whitney U test (non-normal distribution), and one-way or two-way ANOVA was used for comparing multiple groups. Pearson χ2 test or Fisher's exact test was used to compare qualitative variables. Survival curves were plotted by the Kaplan-Meier method and compared by the log-rank test. P values of < 0.05 were considered statistically significant. RESULTS: NOD1 was highly expressed in CSCC with lymph-vascular space invasion (LVSI, P < 0.01) and lymph node metastasis (LM, P < 0.01) and related to worse overall survival (OS, P = 0.016). In vitro and in vivo functional assays revealed that the upregulation of NOD1 or NOD2 in CSCC cells promoted proliferation, invasion, and migration. Mechanistically, NOD1 and NOD2 exerted their oncogenic effects by activating NF-κb and ERK signaling pathways and enhancing IL-8 secretion. Inhibition of the IL-8 receptor partially abrogated the effects of NOD1/2 on CSCC cells. CONCLUSIONS: NOD1/2-NF-κb/ERK and IL-8 axis may be involved in the progression of CSCC; the NOD1 significantly enhanced the progression of proliferation and metastasis, which leads to a poor prognosis. Anti-IL-8 was identified as a potential therapeutic target for patients with NOD1high tumor.


Assuntos
Carcinoma de Células Escamosas , Proteína Adaptadora de Sinalização NOD1 , Proteína Adaptadora de Sinalização NOD2 , Neoplasias do Colo do Útero , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Feminino , Humanos , Imunidade Inata , Metástase Linfática , Proteína Adaptadora de Sinalização NOD1/genética , Proteína Adaptadora de Sinalização NOD1/metabolismo , Proteína Adaptadora de Sinalização NOD2/genética , Proteína Adaptadora de Sinalização NOD2/metabolismo , Regulação para Cima , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia
6.
J Cell Biochem ; 120(9): 15709-15718, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31127650

RESUMO

Due to the increasing incidence and mortality, the early diagnosis, specific targeted therapies, and prognosis for colorectal cancer (CRC) attract more and more attention. Wild-type p53-induced phosphatase 1 (Wip1) and karyopherin α2 (KPNA2) have been regarded as oncogenes in many cancers, including CRC. Wip1 dephosphorylates p53 to inactivate it. TP53 activator and Wip1 inhibitor downregulate KPNA2 expression. Therefore, we speculate that Wip1 may co-operate with KPNA2 to modulate CRC progression in a p53-dependent manner. Here, Wip1 and KPNA2 messenger RNA expression and protein levels are significantly increased in CRC tissues and cell lines and are positively correlated with each other. Wip1 silence increases p53 phosphorylation while decreases KPNA2 protein. Wip1 knockdown remarkably suppresses CRC cell proliferation and migration while KPNA2 overexpression exerts an opposing effect. KPNA2 overexpression could partially rescue Wip1 silence-inhibited CRC cell proliferation and migration. Finally, Wip1 interacts with KPNA2 to modulate the activation of AKT/GSK-3ß signaling and metastasis-related factors. In summary, Wip1 could co-operate with KPNA2 to modulate CRC cell proliferation and migration, possibly via a p53-dependent manner, through downstream AKT/GSK-3ß pathway. We provided a novel mechanism of Wip1 interacting with KPNA2, therefore modulating CRC cell proliferation and migration.


Assuntos
Neoplasias Colorretais/metabolismo , Proteína Fosfatase 2C/metabolismo , Proteína Supressora de Tumor p53/metabolismo , alfa Carioferinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Neoplasias Colorretais/genética , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Células HT29 , Humanos , Fosforilação , Prognóstico , Proteína Fosfatase 2C/genética , Regulação para Cima , alfa Carioferinas/genética
7.
Electrophoresis ; 40(21): 2877-2887, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31216068

RESUMO

Protein SUMOylation modification conjugated with small ubiquitin-like modifiers (SUMOs) is one kind of PTMs, which exerts comprehensive roles in cellular functions, including gene expression regulation, DNA repair, intracellular transport, stress responses, and tumorigenesis. With the development of the peptide enrichment approaches and MS technology, more than 6000 SUMOylated proteins and about 40 000 SUMO acceptor sites have been identified. In this review, we summarize several popular approaches that have been developed for the identification of SUMOylated proteins in human cells, and further compare their technical advantages and disadvantages. And we also introduce identification approaches of target proteins which are co-modified by both SUMOylation and ubiquitylation. We highlight the emerging trends in the SUMOylation field as well. Especially, the advent of the clustered regularly interspaced short palindromic repeats/ Cas9 technique will facilitate the development of MS for SUMOylation identification.


Assuntos
Espectrometria de Massas , Peptídeos , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina , Sumoilação , Sistemas CRISPR-Cas , Células Cultivadas , Edição de Genes , Humanos , Modelos Moleculares , Peptídeos/análise , Peptídeos/química , Peptídeos/isolamento & purificação , Proteínas Recombinantes de Fusão , Ubiquitinação
8.
Cell Commun Signal ; 17(1): 82, 2019 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-31345225

RESUMO

BACKGROUND: The SUMO-activating enzyme SAE1 is indispensable for protein SUMOylation. A dysregulation of SAE1 expression involves in progression of several human cancers. However, its biological roles of SAE1 in glioma are unclear by now. METHODS: The differential proteome between human glioma tissues and para-cancerous brain tissues were identified by LC-MS/MS. SAE1 expression was further assessed by immunohistochemistry. The patient overall survival versus SAE1 expression level was evaluated by Kaplan-Meier method. The glioma cell growth and migration were evaluated under SAE1 overexpression or inhibition by the CCK8, transwell assay and wound healing analysis. The SUMO1 modified target proteins were enriched from total cellular or tissue proteins by incubation with the anti-SUMO1 antibody on protein-A beads overnight, then the SUMOylated proteins were detected by Western blot. Cell apoptosis and cell cycle were analyzed by flow cytometry. The nude mouse xenograft was determined glioma growth and tumorigenicity in vivo. RESULTS: SAE1 is identified to increase in glioma tissues by a quantitative proteomic dissection, and SAE1 upregulation indicates a high level of tumor malignancy grade and a poor overall survival for glioma patients. SAE1 overexpression induces an increase of the SUMOylation and Ser473 phosphorylation of AKT, which promotes glioma cell growth in vitro and in nude mouse tumor model. On the contrary, SAE1 silence induces an obvious suppression of the SUMOylation and Ser473 phosphorylation of Akt, which inhibits glioma cell proliferation and the tumor xenograft growth through inducing cell cycle arrest at G2 phase and cell apoptosis driven by serial biochemical molecular events. CONCLUSION: SAE1 promotes glioma cancer progression via enhancing Akt SUMOylation-mediated signaling pathway, which indicates targeting SUMOylation is a promising therapeutic strategy for human glioma.


Assuntos
Neoplasias Encefálicas/patologia , Progressão da Doença , Glioma/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Sumoilação , Enzimas Ativadoras de Ubiquitina/metabolismo , Animais , Apoptose , Carcinogênese , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Técnicas de Silenciamento de Genes , Humanos , Masculino , Camundongos , Análise de Sobrevida , Enzimas Ativadoras de Ubiquitina/deficiência , Enzimas Ativadoras de Ubiquitina/genética , Regulação para Cima
9.
Mol Cell Proteomics ; 16(7): 1217-1232, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-26657266

RESUMO

Cathepsin D is reportedly to be closely associated with tumor development, migration, and invasion, but its pathological mechanism is not fully elucidated. We aimed to evaluate phenotypic changes and molecular events in response to cathepsin D knockdown. Lowering endogenous cathepsin D abundance (CR) induced senescence in HeLa cells, leading to reduced rate of cell proliferation and impaired tumorigenesis in a mouse model. Quantitative proteomics revealed that compared with control cells (EV), the abundances of several typical lysosomal proteases were decreased in the lysosomal fraction in CR cells. We further showed that cathepsin D knockdown caused increased permeability of lysosomal membrane and reactive oxygen species accumulation in CR cells, and the scavenging of reactive oxygen species by antioxidant was able to rescue cell senescence. Despite the increased reactive oxygen species, the proteomic data suggested a global reduction of redox-related proteins in CR cells. Subsequent analysis indicated that the transcriptional activity of nuclear factor erythroid-related factor 2 (Nrf2), which regulates the expression of groups of antioxidant enzymes, was down-regulated by cathepsin D knockdown. Importantly, Nrf2 overexpression significantly reduced cell senescence. Although transient oxidative stress promoted the accumulation of Nrf2 in the nucleus, we showed that the Nrf2 protein exited nucleus if oxidative stress persisted. In addition, when cathepsin D was transiently knocked down, the cathepsin-related events followed a sequential order, including lysosomal leakage during the early stage, followed by oxidative stress augmentation, and ultimately Nrf2 down-regulation and senescence. Our results suggest the roles of cathepsin D in cancer cells in maintaining lysosomal integrity, redox balance, and Nrf2 activity, thus promoting tumorigenesis. The MS Data are available via ProteomeXchange with identifier PXD002844.


Assuntos
Catepsina D/genética , Fator 2 Relacionado a NF-E2/metabolismo , Neoplasias/metabolismo , Proteômica/métodos , Espécies Reativas de Oxigênio/metabolismo , Células A549 , Animais , Catepsina D/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Proliferação de Células , Senescência Celular , Regulação para Baixo , Feminino , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Lisossomos/genética , Lisossomos/metabolismo , Camundongos , Transplante de Neoplasias , Neoplasias/genética , Estresse Oxidativo
10.
Mol Pharmacol ; 94(2): 885-894, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29784649

RESUMO

SUMOylation, one of post-translational modifications, is covalently modified on lysine residues of a target protein through an enzymatic cascade reaction similar to protein ubiquitination. Along with identification of many SUMOylated proteins, protein SUMOylation has been proven to regulate multiple biologic activities including transcription, cell cycle, DNA repair, and innate immunity. The dysregulation of protein SUMOylation and deSUMOylation modification is linked with carcinogenesis and tumor progression. The SUMOylation-associated enzymes are usually elevated in various cancers, which function as cancer biomarkers to relate to poor outcomes for patients. Considering the significance of protein SUMOylation in regulating diverse biologic functions in cancer progression, numerous small-molecule inhibitors targeting protein SUMOylation pathway are developed as potentially clinical anticancer therapeutics. Here, we systematically summarize the latest progresses of associations of small ubiquitin-like modifier (SUMO) enzymes with cancers and small-molecular inhibitors against human cancers by targeting SUMOylation enzymes. We also compared the pros and cons of several special anticancer inhibitors targeting SUMO pathway. As more efforts are invested in this field, small-molecule inhibitors targeting the SUMOylation modification pathway are promising for development into novel anticancer drugs.


Assuntos
Neoplasias/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/antagonistas & inibidores , Humanos , Neoplasias/tratamento farmacológico , Bibliotecas de Moléculas Pequenas/uso terapêutico , Sumoilação/efeitos dos fármacos
11.
Mol Carcinog ; 57(1): 32-43, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28802022

RESUMO

MicroRNAs (miRNAs) are small non-coding RNA that target protein-coding mRNAs at the post-transcriptional level. The aim of this study was to define the role of miR-492 in cervical squamous cell carcinomas. After microRNA profiling and comparison, we firstly detected miR-492 expression in 104 tumor tissues biopsies derived from advanced staged (FIGO IIB-IIIB) cervical squamous cell carcinoma patients before receiving concomitant chemoradiotherapy and found miR-492 expression was significantly higher in the specimens that were sensitive to concomitant chemoradiotherapy, as compared with insensitive cancer specimens (P < 0.05). Moreover, higher expression of miR-492 was associated with pelvic lymph node metastasis (LNM) (P < 0.05). Further studies illustrated ectopic miR-492 overexpression in SiHa cells promoted cell proliferation, migration, and enhanced the sensitivity of cervical cancer cells to irradiation by promoting apoptosis. In addition, we identified TIMP2 as a direct miR-492 target, which has been shown to be critical in modulating cancer cell migration and invasion. We also confirmed that miR-492 expression levels in positive pelvic LNM were much higher than negative LNM and miR-492 played a vital role in pelvic lymph node metastasis via regulating miR-492/TIMP2/MMP10 axis. In particular, miR-492 was correlated with prognosis in the subgroup of patients with negative pelvic LNM (P < 0.05) and had a promising value in predicting treatment response in the subgroup of patients with positive pelvic LNM (an AUC of 85%, 75.00% specificity, and 95.24% sensitivity). Taken together, the results suggested that miR-492 may serve as a potential biomarker for cervical cancer treatment and prognosis.


Assuntos
Carcinoma de Células Escamosas/genética , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Neoplasias do Colo do Útero/genética , Animais , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/radioterapia , Linhagem Celular Tumoral , Feminino , Perfilação da Expressão Gênica/métodos , Humanos , Metástase Linfática , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Invasividade Neoplásica , Inibidor Tecidual de Metaloproteinase-2/genética , Inibidor Tecidual de Metaloproteinase-2/metabolismo , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/radioterapia , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Support Care Cancer ; 26(7): 2333-2339, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29417291

RESUMO

Treatment and management of cancers in elderly patients require some special considerations. A better understanding of how cancers progress in those elderly patients who have not received any anticancer treatments could better help us in treating these patients and in making end-of-life decisions. Over the past years, we had encountered 57 elderly patients, aged 75 to 94 years (87.6 on average), with a cancer in the digestive system, who refused to accept anticancer treatment but who did receive the best available supportive and palliative care. Clinicopathological data of these patients were analyzed. Of these 57 cases, 49 were at an advanced or late stage, while the remaining eight were at an early stage at the time of diagnosis. The median overall survival time of all the patients was 11 months, and almost the entire cohort manifested multiple-organ impairments. The average number of malfunctioning organs per patient was 3.68. After carefully predicting, and then preventing or managing complications, only 54.4% of the patients eventually died of multiple-organ functional failure. Nearly 18% of the single organ dysfunctions were finally well-controlled. Our data provide the first statistical information on the survival time and the direct cause of death of the elderly patients with a cancer in the digestive system not treated with chemotherapy or other direct anticancer interventions, but who did receive the best available supportive and palliative cares. During their struggle with cancer, elderly patients clearly could benefit from prophylactic interventions on organ dysfunction.


Assuntos
Sistema Digestório/efeitos da radiação , Neoplasias/terapia , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Neoplasias/mortalidade , Neoplasias/patologia , Análise de Sobrevida
13.
Int J Med Sci ; 15(4): 309-322, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29511367

RESUMO

Biomedical research has advanced swiftly in recent decades, largely due to progress in biotechnology. However, this rapid spread of new, and not always-fully understood, technology has also created a lot of false or irreproducible data and artifacts, which sometimes have led to erroneous conclusions. When describing various scientific issues, scientists have developed a habit of saying "on one hand… but on the other hand…", because discrepant data and conclusions have become omnipresent. One reason for this problematic situation is that we are not always thoughtful enough in study design, and sometimes lack enough philosophical contemplation. Another major reason is that we are too rushed in introducing new technology into our research without assimilating technical details. In this essay, we provide examples in different research realms to justify our points. To help readers test their own weaknesses, we raise questions on technical details of RNA reverse transcription, polymerase chain reactions, western blotting and immunohistochemical staining, as these methods are basic and are the base for other modern biotechnologies. Hopefully, after contemplation and reflection on these questions, readers will agree that we indeed know too little about these basic techniques, especially about the artifacts they may create, and thus many conclusions drawn from the studies using those ever-more-sophisticated techniques may be even more problematic.


Assuntos
Pesquisa Biomédica/educação , Pesquisa Biomédica/normas , Biotecnologia/métodos , Pesquisa Biomédica/tendências , Biotecnologia/educação , Biotecnologia/normas , Humanos
14.
Med Sci Monit ; 24: 7750-7758, 2018 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-30374014

RESUMO

BACKGROUND The status of p53 is critical to the chemoradiosensitivity of cervical cancer cells. Wild-type p53 is essential to orchestrate the cellular response to cytotoxic stimuli. Our previous data illustrated that cervical cancer patients whose specimens overexpressed microR-492 (miR-492) were highly sensitive to concurrent chemoradiation. Although p53 activation has been reported to upregulate miR-492 by a miRNA profiling assay in lung cancer cells, the transcriptional regulation of miR-492 in cervical cancer cells remains poorly understood. Therefore, we aimed to decipher the relationship between p53 and miR-492 in cervical cancer cells. MATERIAL AND METHODS The expression of p53 and miR-492 in cervical cancer cell lines was measured by western blot and real-time PCR. After cells were transfected with wild-type p53 plasmid or were treated by irradiation and 5-fluorouracil (5-FU), the expression changes of p53 as well as miR-492 were examined by western blot and real-time PCR. The putative p53 binding site of miR-492 was first analyzed by bioinformatics tools, then validated by chromatin immunoprecipitation and dual-luciferase reporter assays. RESULTS We found that miR-492 was upregulated in cells with wild-type p53 compared to cells with mutant p53. Transfection of wild-type p53 plasmid or treatments with cytotoxic reagents including irradiation and 5-FU all induced miR-492 overexpression. Bioinformatics analysis and experimental validations further proved p53 interacted with miR-492 promoter directly. CONCLUSIONS In cervical cancer cells, p53 activated miR-492 expression transcriptionally.


Assuntos
MicroRNAs/genética , Proteína Supressora de Tumor p53/metabolismo , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/terapia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Feminino , Fluoruracila/uso terapêutico , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/metabolismo , Radioterapia , Ativação Transcricional , Transfecção , Proteína Supressora de Tumor p53/genética , Regulação para Cima , Neoplasias do Colo do Útero/metabolismo
15.
Clin Proteomics ; 14: 15, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28484360

RESUMO

BACKGROUND: Aberrant expression of Na+/K+-ATPase α1 subunit (ATP1A1) is widely observed in multiple types of tumors, and its tissue-specific expression relates to cancer development. However, the functions and molecular mechanisms in renal cell carcinoma (RCC) are not fully understood. METHODS: We investigated the ATP1A1 expression changes and possible roles in RCC through a quantitative proteomic approach and an integrative biochemical assessment. We detected ATP1A1 in RCC with LC-MS/MS, and further validated its expression with immunohistochemical analyses of 80 pairs of the RCC tumor and non-tumor tissues samples. The association of ATP1A1 expression with RCC pathology was statistically analyzed. Cell proliferation, migration and apoptosis were measured by CCK-8, boyden chamber assay and flow cytometry, respectively. The production of reactive oxygen species (ROS) was labeled with a single staining using a commercial kit, and was further detected with flow cytometry. RESULTS: The ATP1A1 shows a significantly decreased expression in human RCC tissues than in the adjacent non-tumor tissues. The RCC patients with ATP1A1-positive expression exhibit longer overall survival time than the ATP1A1-negative patients. The exogenous overexpression of ATP1A1 inhibits RCC cell proliferation and cell migration by increasing the production of ROS. In addition, ATP1A1-mediated Raf/MEK/ERK signaling pathway is suppressed in RCC cells, indicating the possible occurrence of induced cell apoptosis. CONCLUSIONS: Our in vitro and in vivo data of ATP1A1 inhibitory roles in RCC progression suggest that ATP1A1 is a potential novel suppressor protein for renal cancer.

16.
J Carcinog ; 15: 3, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27298590

RESUMO

"Gene amplification causes overexpression" is a longstanding and well-accepted concept in cancer genetics. However, raking the whole literature, we find only statistical analyses showing a positive correlation between gene copy number and expression level, but do not find convincing experimental corroboration for this notion, for most of the amplified oncogenes in cancers. Since an association does not need to be an actual causal relation, in our opinion, this widespread notion still remains a reasonable but unproven assumption awaiting experimental verification.

17.
J Proteome Res ; 14(10): 4319-31, 2015 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-26312558

RESUMO

Exosomes are 30-120 nm-sized membrane vesicles of endocytic origin that are released into the extracellular environment and play roles in cell-cell communication. Tumor-associated macrophages (TAMs) are important constituents of the tumor microenvironment; thus, it is critical to study the features and complex biological functions of TAM-derived exosomes. Here, we constructed a TAM cell model from a mouse macrophage cell line, Ana-1, and performed comparative proteomics on exosomes, exosome-free media, and cells between TAMs and Ana-1. Proteomic analysis between exosome and exosome-free fractions indicated that the functions of exosome dominant proteins were mainly enriched in RNA processing and proteolysis. TAM status dramatically affected the abundances of 20S proteasome subunits and ribosomal proteins in their exosomes. The 20S proteasome activity assay strongly indicated that TAM exosomes possessed higher proteolytic activity. In addition, Ana-1- and TAM-derived exosomes have different RNA profiles, which may result from differential RNA processing proteins. Taken together, our comprehensive proteomics study provides novel views for understanding the complicated roles of macrophage-derived exosomes in the tumor microenvironment.


Assuntos
Exossomos/metabolismo , Macrófagos/metabolismo , Proteoma/isolamento & purificação , Processamento Pós-Transcricional do RNA , Proteínas Ribossômicas/isolamento & purificação , Animais , Comunicação Celular , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Ensaios Enzimáticos , Exossomos/química , Macrófagos/química , Macrófagos/patologia , Camundongos , Anotação de Sequência Molecular , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Proteoma/genética , Proteoma/metabolismo , Proteômica/métodos , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Espectrometria de Massas em Tandem , Microambiente Tumoral/genética
18.
J Biol Chem ; 289(44): 30567-30577, 2014 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-25225294

RESUMO

Deciphering the inositol-requiring enzyme 1 (IRE1) signaling pathway is fundamentally important for understanding the unfolded protein response (UPR). The ubiquitination of proteins residing on the endoplasmic reticulum (ER) membrane has been reported to be involved in the UPR, although the mechanism has yet to be fully elucidated. Using immunoprecipitation and mass spectrometry, IRE1 was identified as a substrate of the E3 ligase CHIP (carboxyl terminus of HSC70-interacting protein) in HEK293 cells under geldanamycin-induced ER stress. Two residues of IRE1, Lys(545) and Lys(828), were targeted for Lys(63)-linked ubiquitination. Moreover, in CHIP knockdown cells, IRE1 phosphorylation and the IRE1-TRAF2 interaction were nearly abolished under ER stress, which may be due to lacking ubiquitination of IRE1 on Lys(545) and Lys(828), respectively. The cellular responses were evaluated, and the data indicated that CHIP-regulated IRE1/TRAF2/JNK signaling antagonized the senescence process. Therefore, our findings suggest that CHIP-mediated ubiquitination of IRE1 contributes to the dynamic regulation of the UPR.


Assuntos
Endorribonucleases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Ubiquitina-Proteína Ligases/fisiologia , Ubiquitinação , Sequência de Aminoácidos , Senescência Celular , Estresse do Retículo Endoplasmático , Endorribonucleases/química , Células HEK293 , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Dados de Sequência Molecular , Proteínas Serina-Treonina Quinases/química , Fator 2 Associado a Receptor de TNF/metabolismo , Resposta a Proteínas não Dobradas
19.
Biochim Biophys Acta ; 1842(9): 1423-32, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24735981

RESUMO

An abundance of microfibril-associated glycoprotein 3-like (MFAP3L) significantly correlates with distant metastasis in colorectal cancer (CRC), although the mechanism has yet to be explained. In this study, we observed that MFAP3L knock-down resulted in reduced CRC cell invasion and hepatic metastasis. We evaluated the cellular location and biochemical functions of MFAP3L and found that this protein was primarily localized in the nucleus of CRC cells and acted as a protein kinase. When EGFR translocated into the nucleus upon stimulation with EGF, MFAP3L was phosphorylated at Tyr287 within its SH2 motif, and the activated form of MFAP3L phosphorylated ERK2 at Thr185 and Tyr187. Moreover, the metastatic behavior of CRC cells in vitro and in vivo could be partially explained by activation of the nuclear ERK pathway through MFAP3L phosphorylation. Hence, we experimentally demonstrated for the first time that MFAP3L likely participates in the nuclear signaling of EGFR and ERK2 and acts as a novel nuclear kinase that impacts CRC metastasis.


Assuntos
Movimento Celular , Neoplasias Colorretais/patologia , Proteínas Contráteis/metabolismo , Receptores ErbB/metabolismo , Neoplasias Hepáticas/secundário , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Animais , Western Blotting , Adesão Celular , Proliferação de Células , Clonagem Molecular , Neoplasias Colorretais/metabolismo , Proteínas Contráteis/antagonistas & inibidores , Proteínas Contráteis/genética , Feminino , Imunofluorescência , Humanos , Técnicas Imunoenzimáticas , Imunoprecipitação , Neoplasias Hepáticas/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica , Fosforilação , RNA Interferente Pequeno/genética , Transdução de Sinais , Células Tumorais Cultivadas , Cicatrização , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Mol Carcinog ; 54(10): 1051-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24789055

RESUMO

Esophageal squamous cell carcinoma (ESCC) occurs at a very high frequency in certain areas of China. Supplementation with selenium-containing compounds was associated with a significantly lower cancer mortality rate in a study conducted in Linxia, China. Thus, selenium could be a potential anti-esophageal cancer agent. In this study, methylseleninic acid (MSA) could inhibit cell growth of ESCC cells in vitro and in vivo. Upon treated with MSA, the activity of histone deacetylases (HDACs) was decreased and general control nonrepressed protein 5 (GCN5) was upregulated in ESCC cells. Meanwhile, a significant increase of H3K9 acetylation (H3K9ac) was detected. Upregulation of Krüppel-like factor 4 (KLF4) was also observed after MSA treatment. Additionally, the acetylated histone H3 located more at KLF4 promoter region after MSA treatment, shown by chromatin immunoprecipitation (ChIP) assay. Moreover, knockdown of GCN5 decreased the protein level of both H3K9ac and KLF4, along with less cell growth inhibition. Taken all, our results indicated that MSA could inhibit ESCC cell growth, at least in part, by MSA-HDAC/GCN5-H3K9ac-KLF4 axis. To our best knowledge, this is the first report that MSA induced acetylation of histone H3 at Lys9, which might depend on the activities and the balance between HDACs and HATs.


Assuntos
Acetilação/efeitos dos fármacos , Carcinoma de Células Escamosas/metabolismo , Neoplasias Esofágicas/metabolismo , Histona Acetiltransferases/metabolismo , Histona Desacetilases/metabolismo , Histonas/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Compostos Organosselênicos/farmacologia , Animais , Carcinoma de Células Escamosas/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Imunoprecipitação da Cromatina/métodos , Neoplasias Esofágicas/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago , Humanos , Fator 4 Semelhante a Kruppel , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Regiões Promotoras Genéticas/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA