Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
Mol Ther ; 31(5): 1383-1401, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-36855303

RESUMO

Ulcerative colitis (UC) is a chronic or relapsing inflammatory disease with limited therapeutic outcomes. Pterostilbene (PSB) is a polyphenol-based anti-oxidant that has received extensive interest for its intrinsic anti-inflammatory and anti-oxidative activities. This work aims to develop a reactive oxygen species (ROS)-responsive, folic acid (FA)-functionalized nanoparticle (NP) for efficient PSB delivery to treat UC. The resulting PSB@NP-FA had a nano-scaled diameter of 231 nm and a spherical shape. With ROS-responsive release and ROS-scavenging properties, PSB@NP could effectively scavenge H2O2, thereby protecting cells from H2O2-induced oxidative damage. After FA modification, the resulting PSB@NP-FA could be internalized by RAW 264.7 and Colon-26 cells efficiently and preferentially localized to the inflamed colon. In dextran sulfate sodium (DSS)-induced colitis models, PSB@NP-FA showed a prominent ROS-scavenging capacity and anti-inflammatory activity, therefore relieving murine colitis effectively. Mechanism results suggested that PSB@NP-FA ameliorated colitis by regulating dendritic cells (DCs), promoting macrophage polarization, and regulating T cell infiltration. Both innate and adaptive immunity were involved. More importantly, the combination of the PSB and dexamethasone (DEX) enhanced the therapeutic efficacy of colitis. This ROS-responsive and ROS-scavenging nanocarrier represents an alternative therapeutic approach to UC. It can also be used as an enhancer for classic anti-inflammatory drugs.


Assuntos
Colite Ulcerativa , Colite , Camundongos , Animais , Espécies Reativas de Oxigênio , Peróxido de Hidrogênio/farmacologia , Modelos Animais de Doenças , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colo , Colite Ulcerativa/induzido quimicamente , Imunidade Adaptativa , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Sulfato de Dextrana/efeitos adversos
2.
Apoptosis ; 28(9-10): 1304-1314, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37523039

RESUMO

Amino acids (AAs) are crucial molecules for the synthesis of mammalian proteins as well as a source of energy and redox equilibrium maintenance. The development of tumors also requires AAs as nutrients. Increased AAs metabolism is frequently seen in tumor cells to produce enough biomass, energy, and reduction agents. However, increased AA demand may result in auxotrophy in some cancer cells, highlighting the vulnerabilities of cancers and exposing the AA metabolism as a potential target for cancer therapy. The dynamic balance of cell survival and death is required for cellular homeostasis, growth, and development. Malignant cells manage to avoid cell death through a range of mechanisms, such as developing an addiction to amino acids through metabolic adaptation. In order to offer some guidance for AA-targeted cancer therapy, we have outlined the function of AA metabolism in tumor progression, the modalities of cell death, and the regulation of AA metabolism on tumor cell death in this review.


Assuntos
Aminoácidos , Apoptose , Animais , Aminoácidos/metabolismo , Proteínas , Homeostase , Morte Celular , Mamíferos/metabolismo
3.
Biochem Biophys Res Commun ; 638: 210-218, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36481361

RESUMO

Hepatocellular carcinoma (HCC) is a serious threat to human health and life due to its high morbidity and mortality. Ubiquitin-conjugating enzymes are players in the ubiquitin proteasome system and are responsible for a great number of physiological activities in cells. The action of ubiquitin-conjugating enzyme UBE2K in HCC has not been reported. Therefore, we studied the function and role of UBE2K in the malignant progression of HCC. An analysis of UBE2K expression in HCC cells was performed using RT-qPCR and protein immunoblotting. CCK-8, Transwell and sphere formation assays were used to identify the potential effects of UBE2K in HCC cell proliferation, migration and stemness property. RT-qPCR, and protein immunoblotting experiments was taken to explore the regulation between UBE2K and c-Myc. Here, we discovered that UBE2K expression was elevated in HCC cells, and elevated UBE2K predicts worse prognosis for HCC patients. Functionally, UBE2K promote, while UBE2K knockdown suppressed cell proliferation, migration and stemness property of HCC cells. Furthermore, c-Myc was identified as a downstream target of UBE2K. Moreover, functional rescue experiments finally proved that UBE2K facilitates the malignant progression of HCC cells by upregulating c-Myc. We clarified through in vivo experiments that UBE2K expression promotes tumor growth in HCC. Taken together, our study results proved the molecular regulation of UBE2K and c-Myc in HCC and the oncogenic role of UBE2K/c-Myc axis in HCC progression, thus it provides a promising molecular target for the diagnosis and treatment of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Linhagem Celular , Proliferação de Células , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo
4.
BMC Cancer ; 23(1): 967, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37828435

RESUMO

BACKGROUND: The immune microenvironment within hepatocellular carcinoma (HCC) is remarkably intricate. Although the combination of an immune checkpoint inhibitor and Lenvatinib can extend the overall survival of HCC patients, the outcome remains suboptimal. METHODS: We assessed alterations in MEX3C expression during hepatocarcinogenesis by validating multiple databases and subsequently developed a predictive model. Subsequently, we enriched the associated genes of MEX3C to investigate its functional role. We examined the correlation between MEX3C expression levels and immune infiltrating cells. The effects of MEX3C knockdown and Lenvatinib on hepatoma cells were observed by cell function experiments. RESULTS: MEX3C expression is elevated in HCC compared to normal tissues, and its high expression correlates with poor prognosis. Immune checkpoint expression was elevated in the high MEX3C expression group, concomitant with heightened myeloid-derived suppressor cell (MDSC) expression. The combination of MEX3C knockdown and Lenvatinib demonstrated a stronger inhibitory effect on HCC cells compared to Lenvatinib alone. CONCLUSION: MEX3C shows promise as a potential therapeutic target for treating HCC. Furthermore, the combination of MEX3C knockdown and Lenvatinib could offer a novel therapeutic avenue for HCC treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Quinolinas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Compostos de Fenilureia/farmacologia , Compostos de Fenilureia/uso terapêutico , Quinolinas/farmacologia , Quinolinas/uso terapêutico , Microambiente Tumoral , Proteínas de Ligação a RNA
5.
J Nanobiotechnology ; 21(1): 500, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38129928

RESUMO

BACKGROUND: Hepatic ischemia-reperfusion injury (HIRI) is a pathophysiological process during liver transplantation, characterized by insufficient oxygen supply and subsequent restoration of blood flow leading to an overproduction of reactive oxygen species (ROS), which in turn activates the inflammatory response and leads to cellular damage. Therefore, reducing excess ROS production in the hepatic microenvironment would provide an effective way to mitigate oxidative stress injury and apoptosis during HIRI. Nanozymes with outstanding free radical scavenging activities have aroused great interest and enthusiasm in oxidative stress treatment. RESULTS: We previously demonstrated that carbon-dots (C-dots) nanozymes with SOD-like activity could serve as free radicals scavengers. Herein, we proposed that C-dots could protect the liver from ROS-mediated inflammatory responses and apoptosis in HIRI, thereby improving the therapeutic effect. We demonstrated that C-dots with anti-oxidative stress and anti-inflammatory properties improved the survival of L-02 cells under H2O2 and LPS-treated conditions. In the animal model, Our results showed that the impregnation of C-dots could effectively scavenge ROS and reduce the expression of inflammatory cytokines, such as IL-1ß, IL-6, IL-12, and TNF-α, resulting in a profound therapeutic effect in the HIRI. To reveal the potential therapeutic mechanism, transcriptome sequencing was performed and the relevant genes were validated, showing that the C-dots exert hepatoprotective effects by modulating the hepatic inflammatory network and inhibiting apoptosis. CONCLUSIONS: With negligible systemic toxicity, our findings substantiate the potential of C-dots as a therapeutic approach for HIRI, thereby offering a promising intervention strategy for clinical implementation.


Assuntos
Peróxido de Hidrogênio , Traumatismo por Reperfusão , Animais , Espécies Reativas de Oxigênio/metabolismo , Peróxido de Hidrogênio/metabolismo , Fígado/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Apoptose
6.
J Cell Mol Med ; 26(20): 5292-5302, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36098205

RESUMO

Long noncoding RNAs (lncRNAs) are confirmed as the key regulators of hepatocellular carcinoma (HCC) occurrence and progression, but the role of AlkB homologue 3 antisense RNA 1 (ALKBH3-AS1) in HCC is unclear. We revealed the overexpression of ALKBH3-AS1 in HCC tissues. The upregulated levels of ALKBH3-AS1 were observed in HCC cells. ALKBH3-AS1 was expressed in the nucleus and cytoplasm of HCC cells. The high ALKBH3-AS1 expression was markedly associated with a decreased survival rate of HCC patients. ALKBH3-AS1 knockdown repressed and ALKBH3-AS1 overexpression enhanced HCC cell invasion and proliferation. ALKBH3-AS1 silencing restricted HCC growth in vivo. A significant positive correlation between ALKBH3-AS1 and ALKBH3 mRNA levels was confirmed in HCC specimens. ALKBH3-AS1 silencing reduced ALKBH3 expression by stabilizing its mRNA stability in HCC cells. Notably, the impact of ALKBH3 silencing on HCC cells was similar to that of ALKBH3-AS1 knockdown. ALKBH3 restoration prominently attenuated the suppressive effects resulting from ALKBH3-AS1 silencing in HCCLM3 cells. Hypoxia-inducible factor-1α (HIF-1α) transcriptionally activated ALKBH3-AS1 expression in hypoxic HCC cells. ALKBH3-AS1 knockdown markedly attenuated cell proliferation and invasion in hypoxic Huh7 cells. Collectively, HIF-1α-activated ALKBH3-AS1 exerted an oncogenic role by enhancing ALKBH3 mRNA stability in HCC cells.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Estabilidade de RNA , RNA Longo não Codificante , Homólogo AlkB 3 da Dioxigenase Dependente de alfa-Cetoglutarato/genética , Homólogo AlkB 3 da Dioxigenase Dependente de alfa-Cetoglutarato/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Hepáticas/patologia , MicroRNAs/genética , RNA Antissenso , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética
7.
Small ; 18(14): e2107656, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35150039

RESUMO

Even though radiotherapy is the most important therapeutic strategy for colon cancer treatment, there is an enormous demand to improve radiosensitivity in solid tumor destruction. For this purpose, a biomimetic nanoplatform based on hollow polydopamine nanoparticles (HP) with homologous targeting and pH-responsive drug release properties is designed. In this work, HP is constructed by using a chelation competition-induced polymerization strategy and then modified with the cancer cell membrane. Hollow polydopamine integrated with Pt nanoparticles (Pt@HP) has a catalase-like activity, which can be used to trigger endogenous H2 O2 into O2 , relieving hypoxia of the tumor microenvironment (TME). With mesoporous shells and large cavities, Pt@HP shows efficient apoptin100-109 (AP) and verteporfin (VP) loading to form AVPt@HP@M. Under X-ray irradiation, AVPt@HP@M exerts a radiosensitization effect via multiple strategies, including relieving hypoxia (Pt NPs), enhancing tumor apoptosis (AP), and X-ray-induced photodynamic therapy (X-PDT) (VP). Further metabonomics analysis shows that the specific mechanism of the AVPt@HP@M is through influencing purine metabolism. Without appreciable systemic toxicity, this nanoplatform highlights a new strategy for effective radiosensitization and provides a reference for treating malignant tumors.


Assuntos
Neoplasias do Colo , Nanopartículas , Fotoquimioterapia , Biomimética , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/radioterapia , Humanos , Hipóxia , Indóis , Nanopartículas/uso terapêutico , Polímeros , Microambiente Tumoral
8.
J Med Virol ; 94(12): 6127-6132, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35996203

RESUMO

Splenic rupture is the most serious complication of infectious mononucleosis (IM) caused by Epstein-Barr virus (EBV) infection, with a mortality rate of over 1 in 10. We reported a case of spontaneous atraumatic splenic rupture secondary to IM in a young man. The patient presented with abdominal pain caused by splenic rupture as the initial symptom. The diagnosis and treatment process went through a series of twists and turns, including the emergency department, general surgery department, and infection department. This case suggests that clinicians should consider the possibility of EBV infection in young patients with spleen rupture without obvious cause to avoid misdiagnosis and missed diagnosis.


Assuntos
Infecções por Vírus Epstein-Barr , Mononucleose Infecciosa , Ruptura Esplênica , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/diagnóstico , Herpesvirus Humano 4 , Humanos , Mononucleose Infecciosa/complicações , Mononucleose Infecciosa/diagnóstico , Masculino , Ruptura Esplênica/diagnóstico por imagem , Ruptura Esplênica/etiologia
9.
J Nanobiotechnology ; 20(1): 206, 2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35488343

RESUMO

BACKGROUND: Ulcerative colitis (UC) is an inflammatory bowel disease (IBD) characterized by diffuse inflammation of the colonic mucosa and a relapsing and remitting course. The current therapeutics are only modestly effective and carry risks for unacceptable adverse events, and thus more effective approaches to treat UC is clinically needed. RESULTS: For this purpose, turmeric-derived nanoparticles with a specific population (TDNPs 2) were characterized, and their targeting ability and therapeutic effects against colitis were investigated systematically. The hydrodynamic size of TDNPs 2 was around 178 nm, and the zeta potential was negative (- 21.7 mV). Mass spectrometry identified TDNPs 2 containing high levels of lipids and proteins. Notably, curcumin, the bioactive constituent of turmeric, was evidenced in TDNPs 2. In lipopolysaccharide (LPS)-induced acute inflammation, TDNPs 2 showed excellent anti-inflammatory and antioxidant properties. In mice colitis models, we demonstrated that orally administrated of TDNPs 2 could ameliorate mice colitis and accelerate colitis resolution via regulating the expression of the pro-inflammatory cytokines, including TNF-α, IL-6, and IL-1ß, and antioxidant gene, HO-1. Results obtained from transgenic mice with NF-κB-RE-Luc indicated that TDNPs 2-mediated inactivation of the NF-κB pathway might partially contribute to the protective effect of these particles against colitis. CONCLUSION: Our results suggest that TDNPs 2 from edible turmeric represent a novel, natural colon-targeting therapeutics that may prevent colitis and promote wound repair in colitis while outperforming artificial nanoparticles in terms of low toxicity and ease of large-scale production.


Assuntos
Colite Ulcerativa , Colite , Exossomos , Administração Oral , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antioxidantes/uso terapêutico , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/prevenção & controle , Curcuma/metabolismo , Modelos Animais de Doenças , Exossomos/metabolismo , Inflamação/tratamento farmacológico , Camundongos , Camundongos Transgênicos , NF-kappa B/metabolismo
10.
J Nanobiotechnology ; 20(1): 99, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35236359

RESUMO

BACKGROUND: Ulcerative colitis (UC), a subtype of inflammatory bowel disease (IBD), has evolved into a global burden given its high incidence. There is a clinical need to create better diagnostic and therapeutic approaches to UC. RESULTS: We fabricated P-selectin binding peptide-decorated poly lactic-co-glycolic acid (PBP-PLGA-NP) doped with two lipophilic dyes, DiL and DiD. Meanwhile, two low-toxic anti-inflammatory natural products (betulinic acid [BA] and resveratrol [Res]) were co-loaded in the PBP-PLGA-NP system. The BA/Res-loaded NPs had an average size of around 164.18 nm with a negative zeta potential (- 25.46 mV). Entrapment efficiencies of BA and Res were 74.54% and 52.33%, respectively, and presented a sustained drug release profile. Further, the resulting PBP-PLGA-NP could be internalized by RAW 264.7 cells and Colon-26 cells efficiently in vitro and preferentially localized to the inflamed colon. When intravenously injected with luminol, MPO-dependent bioluminescence imaging to visualize tissue inflammation was activated by the bioluminescence and fluorescence resonance energy transfer (BRET-FRET) effect. Importantly, injected NPs could remarkably alleviate UC symptoms yet maintain intestinal microbiota homeostasis without inducing organ injuries in the mice models of colitis. CONCLUSIONS: This theranostic nano-platform not only serves as a therapeutic system for UC but also as a non-invasive and highly-sensitive approach for accurately visualizing inflammation.


Assuntos
Colite Ulcerativa , Nanopartículas , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Colite Ulcerativa/diagnóstico por imagem , Colite Ulcerativa/tratamento farmacológico , Portadores de Fármacos/uso terapêutico , Transferência Ressonante de Energia de Fluorescência , Camundongos , Polímeros/uso terapêutico , Medicina de Precisão
11.
BMC Surg ; 22(1): 159, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35538511

RESUMO

BACKGROUND: This study aimed to investigate the clinical features, diagnostic criteria, treatment options, and prognosis of patients with gastric schwannoma (GS). METHODS: We collected the clinical data of all patients pathologically diagnosed with GS in Zhejiang Provincial People's Hospital from May 2012 to October 2021. RESULTS: A total of 26 cases of GS were analyzed clinicopathologically, where the sizes of the tumor were found to be in the range of 1-6 cm (mean: 3.16 cm, median: 3.05 cm). A computed tomography (CT) scan analysis revealed that most masses were either moderately progressive or uniformly enhanced. According to ultrasound gastroscopy results, most of them were hypoechoic masses. There were 23 cases of surgery and three cases of endoscopic submucosal tumor dissection. Immunohistochemistry demonstrated that S100 was positive in 26 patients, immunomarker SOX10 was positive in five, whereas CD34, CD117, and SMA were negative in most patients. CK (Pan), Dog-1, and Desmin were also found negative. All 26 cases were followed up after the conclusion of the study where no evidence of recurrence or metastasis was observed. CONCLUSIONS: GS is a unique form of peripheral schwannoma. The diagnosis of this type of tumor depends on the pathology and immunohistochemistry of the individual. The key to treating this type of tumor is endoscopy and surgery. Follow up and related literature review showed that GS was a benign tumor with little possibility of malignant transformation.


Assuntos
Neoplasias do Sistema Digestório , Ressecção Endoscópica de Mucosa , Neurilemoma , Neoplasias Gástricas , Gastroscopia/métodos , Humanos , Imuno-Histoquímica , Neurilemoma/diagnóstico , Neurilemoma/cirurgia , Neoplasias Gástricas/cirurgia
12.
Biochem Biophys Res Commun ; 566: 80-86, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34118595

RESUMO

Long non-coding RNAs (lncRNAs) are essential drivers or suppressors in human hepatocellular carcinoma (HCC) by participating in controlling transcription, translation, mRNA stability, and protein degradation protein-protein interaction. TM4SF1-AS1 is recently identified as a tumor-promoting factor in lung cancer. Nevertheless, its function in HCC and related molecular mechanisms remain unknown. Here, our data indicated that either hypoxia or hypoxia-inducible factor (HIF) prolyl hydroxylase inhibitor (DMOG) induced the upregulation of TM4SF1-AS1 in HCC cells. HIF-1α knockdown rather than HIF-2α silencing remarkably abrogated hypoxia-upregulated TM4SF1-AS1 expression. Furthermore, we confirmed the elevated expression of TM4SF1-AS1 in HCC tissue samples and cell lines. The silencing of TM4SF1-AS1 prominently inhibited the proliferative, migratory, and invasive abilities of HCC cells. TM4SF1-AS1 depletion significantly blocked hypoxia-enhanced Hep3B cell proliferation and mobility. Interfering TM4SF1-AS1 remarkably reduced TM4SF1 mRNA and protein levels in HCC cells. But TM4SF1-AS1 knockdown did not impact the stability of TM4SF1 mRNA. Hypoxia enhanced the expression of TM4SF1 mRNA, which was subsequently decreased by TM4SF1-AS1 knockdown in HCC cells. We confirmed the positive correlation between TM4SF1 mRNA and TM4SF1-AS1 expression in HCC specimens. Finally, TM4SF1 prominently reversed the inhibitory role of TM4SF1-AS1 depletion in Hep3B cells. In summary, hypoxia-responsive TM4SF1-AS1 was overexpressed in human HCC and contributed to the malignant behaviors of tumor cells by enhancing TM4SF1-AS1 expression.


Assuntos
Antígenos de Superfície/genética , Carcinoma Hepatocelular/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Hepáticas/genética , Proteínas de Neoplasias/genética , RNA Longo não Codificante/genética , Antígenos de Superfície/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Proteínas de Neoplasias/metabolismo , RNA Longo não Codificante/metabolismo , Ativação Transcricional , Regulação para Cima
13.
Int J Med Sci ; 18(9): 2030-2041, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33850474

RESUMO

The intimate interaction between redox signaling and immunity has been widely revealed. However, the clinical application of relevant therapeutic is unavailable due to the absence of validated markers that stratify patients. Here, we identified novel biomarkers for prognosis prediction in hepatocellular carcinoma (HCC). Prognostic redox-immune-related genes for predicting overall survival (OS) of HCC were identified using datasets from TCGA, LIRI-JP, and GSE14520. LASSO Cox regression was employed to construct the signature model and generate a risk score in the TCGA cohort. The signature contained CDO1, G6PD, LDHA, GPD1L, PPARG, FABP4, CCL20, SPP1, RORC, HDAC1, STC2, HDGF, EPO, and IL18RAP. Patients in the high-risk group had a poor prognosis compared to the low-risk group. Univariate and multivariate Cox regressions identified this signature as an independent factor for predicting OS. Nomogram constructed by multiple clinical parameters showed good performance for predicting OS indicated by the c-index, the calibration curve, and AUC. GSEA showed that oxidoreductase activity and peroxisome-related metabolic pathways were enriched in the low-risk group, while glycolysis activity and hypoxia were higher in the high-risk group. Furthermore, immune profiles analysis showed that the immune score and stromal score were significantly decreased in the high-risk group in the TCGA cohort. There was a considerably lower infiltration of anti-tumor immune cells while a higher proportion of pro-tumor immune cells in silico. Immune markers were distinctly expressed between the subgroups, and redox-sensitive immunoregulatory biomarkers were at higher levels in the high-risk group. Altogether, we identified a redox-immune prognostic signature. A more severe redox perturbation-driven immunosuppressive environment in the high-risk group stratified by the signature may account for poor survival. This may provide a clue to the combined therapy targeting redox and immune in HCC.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/mortalidade , Regulação Neoplásica da Expressão Gênica/imunologia , Neoplasias Hepáticas/mortalidade , Nomogramas , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/patologia , Estudos de Coortes , Conjuntos de Dados como Assunto , Feminino , Perfilação da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Fígado/imunologia , Fígado/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Masculino , Pessoa de Meia-Idade , Oxirredução , Prognóstico , Curva ROC , Medição de Risco/métodos , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
14.
Int J Med Sci ; 18(16): 3749-3758, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34790050

RESUMO

The ubiquitin-conjugating enzyme (E2) is a critical component of the ubiquitin-proteasome system and regulates hepatocarcinogenesis by controlling protein degradation. Ubiquitin-conjugating enzyme E2 O (UBE2O), a member of the E2 family, functions as an oncogene in human cancers. Nevertheless, the role of UBE2O in hepatocellular carcinoma (HCC) remains unknown yet. Here, we demonstrated that the UBE2O level was markedly upregulated in HCC compared with adjacent noncancerous tissues. UBE2O overexpression was also confirmed in HCC cell lines. UBE2O overexpression was prominently associated with advanced tumor stage, high tumor grade, venous infiltration, and reduced HCC patients' survivals. UBE2O knockdown inhibited the migration, invasion, and proliferation of HCCLM3 cells. UBE2O overexpression enhanced the proliferation and mobility of Huh7 cells. Mechanistically, UBE2O mediated the ubiquitination and degradation of AMP-activated protein kinase α2 (AMPKα2) in HCC cells. UBE2O silencing prominently increased AMPKα2 level and reduced phosphorylated mechanistic target of rapamycin kinase (p-mTOR), MYC, Cyclin D1, HIF1α, and SREBP1 levels in HCCLM3 cells. UBE2O depletion markedly activated the AMPKα2/mTOR pathway in Huh7 cells. Moreover, AMPKα2 silencing reversed UBE2O downregulation-induced mTOR pathway inactivation. Rapamycin, an inhibitor of mTOR, remarkably abolished UBE2O-induced mTOR phosphorylation and HCC cell proliferation and mobility. To conclude, UBE2O was highly expressed in HCC and its overexpression conferred to the poor clinical outcomes of patients. UBE2O contributed to the malignant behaviors of HCC cells, including cell proliferation, migration, and invasion, by reducing AMPKα2 stability and activating the mTOR pathway.


Assuntos
Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Enzimas de Conjugação de Ubiquitina/fisiologia , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Adulto , Idoso , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/genética , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
15.
J Cell Mol Med ; 24(13): 7151-7162, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32530106

RESUMO

TGFß2 is an essential regulator of immune cell functionality, but the mechanisms whereby it drives immune infiltration in gastric cancer remain uncertain. The Oncomine and Tumor Immunoassay Resource (TIMER) databases were used for assessing the expression of TGFß2, after which TIMER was used to explore the relationship between TGFß2 and tumour immune infiltration. Finally, we assessed how TGFß2 expression correlated with the expression of a set of marker genes associated with immune infiltration using TIMER and GEPIA. We determined TGFß2 expression to be significantly correlated with outcome in multiple types of cancer in the Cancer Genome Atlas (TCGA), with the effect being particularly pronounced in gastric cancer. Furthermore, elevated TGFß2 expression was found to be significantly correlated with gastric cancer N staging, and with the expression of a variety of immune markers associated with particular immune cell subsets. These results indicate that TGFΒ2 is associated with patient outcome and tumour immune cell infiltration in multiple cancer types. This suggests that TGFß2 is a key factor which governs immune cell recruitment to gastric cancer tumours, potentially playing a vital role in governing immune cell infiltration and thus representing a valuable prognostic biomarker in gastric cancer patients.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Gástricas/imunologia , Fator de Crescimento Transformador beta2/metabolismo , Feminino , Humanos , Estimativa de Kaplan-Meier , Metástase Linfática , Masculino , Prognóstico , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/patologia
16.
Cancer Sci ; 111(11): 4118-4128, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32860321

RESUMO

Accumulating evidence has identified long noncoding RNAs (lncRNAs) as regulators in tumor progression and development. Here, we elucidated the function and possible molecular mechanisms of the effect of lncRNA-PICSAR (p38 inhibited cutaneous squamous cell carcinoma associated lincRNA) on the biological behaviors of HCC. In the present study, we found that PICSAR was upregulated in HCC tissues and cells and correlated with progression and poor prognosis in HCC patients. Gain- and loss-of-function experiments indicated that PICSAR enhanced cell proliferation, colony formation, and cell cycle progression and inhibited apoptosis of HCC cells. PICSAR could function as a competing endogenous RNA by sponging microRNA (miR)-588 in HCC cells. Mechanically, miR-588 inhibited HCC progression and alternation of miR-588 reversed the promotive effects of PICSAR on HCC cells. In addition, we confirmed that eukaryotic initiation factor 6 (EIF6) was a direct target of miR-588 in HCC and mediated the biological effects of miR-588 and PICSAR in HCC, resulting in PI3K/AKT/mTOR pathway activation. Our data identified PICSAR as a novel oncogenic lncRNA associated with malignant clinical outcomes in HCC patients. PICSAR played an oncogenic role by targeting miR-588 and subsequently promoted EIF6 expression and PI3K/AKT/mTOR activation in HCC. Our results revealed that PICSAR could be a potential prognostic biomarker and therapeutic target for HCC.


Assuntos
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Transdução de Sinais , Animais , Apoptose/genética , Biomarcadores Tumorais , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Modelos Animais de Doenças , Feminino , Humanos , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/patologia , Masculino , Camundongos , MicroRNAs/genética , Fatores de Iniciação de Peptídeos/genética , Fatores de Iniciação de Peptídeos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Prognóstico , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Longo não Codificante/genética , Serina-Treonina Quinases TOR/metabolismo
17.
Int J Med Sci ; 17(17): 2735-2743, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33162801

RESUMO

Diffuse large B-cell lymphoma (DLBCL) is commonly treated with R-CHOP, but ~30 to 50% of the patients are poorly responsive to this strategy. Geniposide, an extract from the Gardenia jasminoides Ellis, plays antitumor roles in human gastric cancer, hepatocellular carcinoma, and oral squamous carcinoma. However, the effects of geniposide treatment on DLBCL cells, as well as its underlying mechanism, are still unknown. Here, we found that geniposide inhibited the proliferation of OCI-LY7 and OCI-LY3 cells in a dose-dependent manner. Furthermore, geniposide increased the percentage of apoptotic cells and upregulated the levels of cleaved PARP and cleaved caspase-3 in DLBCL cells. Interestingly, geniposide treatment significantly reduced the expression of the long noncoding RNA HLA complex P5 (lncRNA HCP5) in DLBCL cells. HCP5 expression was revealed to be upregulated in DLBCL tissues and cell lines. Moreover, HCP5 knockdown resulted in proliferation inhibition and apoptosis in OCI-LY7 and OCI-LY3 cells. miR-27b-3p was predicted as a potential target of HCP5 using the lnCAR web tool. Both HCP5 silencing and geniposide treatment increased the level of miR-27b-3p in DLBCL cells. Accordingly, a luciferase reporter assay identified miR-27b-3p as a direct target of HCP5. The expression of miR-27b-3p was upregulated and inversely correlated with the HCP5 level in DLBCL tissues. HCP5 knockdown reduced MET protein expression, which was subsequently rescued by miR-27b-3p silencing in DLBCL cells. Importantly, the restoration of MET partially reversed the geniposide-induced proliferation inhibition and apoptosis of DLBCL cells. In conclusion, geniposide inhibits the proliferation and induces the apoptosis of DLBCL cells at least partially by regulating the HCP5/miR-27b-3p/MET axis, indicating a potential strategy for DLBCL treatment.


Assuntos
Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Iridoides/farmacologia , Linfonodos/patologia , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Apoptose/efeitos dos fármacos , Apoptose/genética , Estudos de Casos e Controles , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Ensaios de Seleção de Medicamentos Antitumorais , Técnicas de Silenciamento de Genes , Inativação Gênica , Humanos , Iridoides/uso terapêutico , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/patologia , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
18.
J Cell Mol Med ; 23(11): 7395-7405, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31483572

RESUMO

The aberrant expression and dysfunction of long non-coding RNAs (lncRNAs) have been identified as critical factors governing the initiation and progression of different human cancers, including diffuse large B-cell lymphoma (DLBCL). LncRNA small nucleolar RNA host gene 16 (SNHG16) has been recognized as a tumour-promoting factor in various types of cancer. However, the biological role of SNHG16 and its underlying mechanism are still unknown in DLBCL. Here we disclosed that SNHG16 was overexpressed in DLBCL tissues and the derived cell lines. SNHG16 knockdown significantly suppressed cell proliferation and cell cycle progression, and it induced apoptosis of DLBCL cells in vitro. Furthermore, silencing of SNHG16 markedly repressed in vivo growth of OCI-LY7 cells. Mechanistically, SNHG16 directly interacted with miR-497-5p by acting as a competing endogenous RNA (ceRNA) and inversely regulated the abundance of miR-497-5p in DLBCL cells. Moreover, the proto-oncogene proviral integration site for Moloney murine leukaemia virus 1 (PIM1) was identified as a novel direct target of miR-497-5p. SNHG16 overexpression rescued miR-497-5p-induced down-regulation of PIM1 in DLBCL cells. Importantly, restoration of PIM1 expression reversed SNHG16 knockdown-induced inhibition of proliferation, G0/G1 phase arrest and apoptosis of OCI-LY7 cells. Our study suggests that the SNHG16/miR-497-5p/PIM1 axis may provide promising therapeutic targets for DLBCL progression.


Assuntos
Apoptose/genética , Proliferação de Células/genética , Linfoma Difuso de Grandes Células B/genética , MicroRNAs/genética , Proteínas Proto-Oncogênicas c-pim-1/genética , RNA Longo não Codificante/genética , Adulto , Idoso , Ciclo Celular/genética , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular/genética , Progressão da Doença , Regulação para Baixo/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Células HEK293 , Humanos , Masculino , Pessoa de Meia-Idade , Proto-Oncogene Mas , Adulto Jovem
19.
J Cell Mol Med ; 23(8): 5037-5047, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31207037

RESUMO

MicroRNAs (miRNAs) are key regulators in the tumour growth and metastasis of human hepatocellular carcinoma (HCC). Increasing evidence suggests that miR-301b-3p functions as a driver in various types of human cancer. However, the expression pattern of miR-301b-3p and its functional role as well as underlying molecular mechanism in HCC remain poorly known. Our study found that miR-301b-3p expression was significantly up-regulated in HCC tissues compared to adjacent non-tumour tissues. Clinical association analysis revealed that the high level of miR-301b-3p closely correlated with large tumour size and advanced tumour-node-metastasis stages. Importantly, the high miR-301b-3p level predicted a prominent poorer overall survival of HCC patients. Knockdown of miR-301b-3p suppressed cell proliferation, led to cell cycle arrest at G2/M phase and induced apoptosis of Huh7 and Hep3B cells. Furthermore, miR-301b-3p knockdown suppressed tumour growth of HCC in mice. Mechanistically, miR-301b-3p directly bond to 3'UTR of vestigial like family member 4 (VGLL4) and negatively regulated its expression. The expression of VGLL4 mRNA was down-regulated and inversely correlated with miR-301b-3p level in HCC tissues. Notably, VGLL4 knockdown markedly repressed cell proliferation, resulted in G2/M phase arrest and promoted apoptosis of HCC cells. Accordingly, VGLL4 silencing rescued miR-301b-3p knockdown attenuated HCC cell proliferation, cell cycle progression and apoptosis resistance. Collectively, our results suggest that miR-301b-3p is highly expressed in HCC. miR-301b-3p facilitates cell proliferation, promotes cell cycle progression and inhibits apoptosis of HCC cells by repressing VGLL4.


Assuntos
Carcinoma Hepatocelular/genética , Proliferação de Células/genética , Pontos de Checagem da Fase G2 do Ciclo Celular/genética , Neoplasias Hepáticas/genética , Metástase Linfática/genética , MicroRNAs/metabolismo , Fatores de Transcrição/metabolismo , Regiões 3' não Traduzidas , Animais , Apoptose/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/secundário , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Técnicas de Silenciamento de Genes , Inativação Gênica , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , Pessoa de Meia-Idade , Prognóstico , Fatores de Transcrição/genética , Transplante Heterólogo
20.
J Cell Biochem ; 120(6): 10310-10322, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30556161

RESUMO

Extensive evidence indicate that long noncoding RNAs (lncRNAs) regulates the tumorigenesis and progression of hepatocellular carcinoma (HCC). However, the expression and biological function of lncRNA A1BG antisense RNA 1 (A1BG-AS1) were poorly known in HCC. Here, we found the underexpression of A1BG-AS1 in HCC via analysis of The Cancer Genome Atlas database. Further analyses confirmed that A1BG-AS1 expression in HCC was markedly lower than that in noncancerous tissues based on our HCC cohort. Clinical association analysis revealed that low A1BG-AS1 expression correlated with poor prognostic features, such as microvascular invasion, high tumor grade, and advanced tumor stage. Follow-up data indicated that low A1BG-AS1 level evidently correlated with poor clinical outcomes of HCC patients. Moreover, forced expression of A1BG-AS1 repressed proliferation, migration, and invasion of HCC cells in vitro. Conversely, A1BG-AS1 knockdown promoted these malignant behaviors in HepG2 cells. Mechanistically, A1BG-AS1 functioned as a competing endogenous RNA by directly sponging miR-216a-5p in HCC cells. Notably, miR-216a-5p restoration rescued A1BG-AS1 attenuated proliferation, migration and invasion of HCCLM3 cells. A1BG-AS1 positively regulated the levels of phosphatase and tensin homolog and SMAD family member 7, which were reduced by miR-216a-5p in HCC cells. Altogether, we conclude that A1BG-AS1 exerts a tumor suppressive role in HCC progression.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/patologia , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Glicoproteínas/antagonistas & inibidores , MicroRNAs/genética , RNA Longo não Codificante/genética , Apoptose , Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Movimento Celular , Feminino , Seguimentos , Glicoproteínas/genética , Humanos , Imunoglobulinas/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica , Oligonucleotídeos Antissenso/genética , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Prognóstico , Proteína Smad7/genética , Proteína Smad7/metabolismo , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA