Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 449
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(22): e2317227121, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38771870

RESUMO

The biophysical properties of lipid vesicles are important for their stability and integrity, key parameters that control the performance when these vesicles are used for drug delivery. The vesicle properties are determined by the composition of lipids used to form the vesicle. However, for a given lipid composition, they can also be tailored by tethering polymers to the membrane. Typically, synthetic polymers like polyethyleneglycol are used to increase vesicle stability, but the use of polysaccharides in this context is much less explored. Here, we report a general method for functionalizing lipid vesicles with polysaccharides by binding them to cholesterol. We incorporate the polysaccharides on the outer membrane leaflet of giant unilamellar vesicles (GUVs) and investigate their effect on membrane mechanics using micropipette aspiration. We find that the presence of the glycolipid functionalization produces an unexpected softening of GUVs with fluid-like membranes. By contrast, the functionalization of GUVs with polyethylene glycol does not reduce their stretching modulus. This work provides the potential means to study membrane-bound meshworks of polysaccharides similar to the cellular glycocalyx; moreover, it can be used for tuning the mechanical properties of drug delivery vehicles.


Assuntos
Polissacarídeos , Lipossomas Unilamelares , Lipossomas Unilamelares/química , Lipossomas Unilamelares/metabolismo , Polissacarídeos/química , Polissacarídeos/metabolismo , Polietilenoglicóis/química , Colesterol/química , Colesterol/metabolismo , Lipídeos/química
2.
Nucleic Acids Res ; 51(8): 3556-3572, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36938879

RESUMO

Thioflavin T (ThT) is a classical fluorescent dye gaining prominence in current research regarding nucleic acid conformations (NACs). However, most NACs with the ability to excite ThT fluorescent are unique or form in demanding conditions, limiting the extensiveness and depth of ThT application in sensing and imaging. Therefore, this study proposed CGG-AAA mismatched cavity hairpin ThT-light nucleic acid switches (CHTLNAS) with excellent fluorescence excitation over 500-fold higher than spontaneous, 17∼20-fold higher than ssDNA and 2.5∼5-fold higher than complementary duplex. Based on the excellent fluorescence excitation, convenient conformation formation, good sequence programmability, and flexible allosteric ability (known as the Worm-crack pod mechanism mediated by the target), it achieved the label- and enzyme-free detection of tetracycline (TET) and berberine (BB) at the pM level within 10 min. Moreover, it was found enable to realize the sensitive tracking of intracellular carriers at the nM level of ThT entry concentration, and prolongated its cell nuclear-entry time of ThT over 8 h, overcoming the non-specific high background signal interference of ThT in the nuclear region, and expanding the diversified application of ThT in cell biology research. Therefore, CHTLNAS is a more universal, practical tool than G-quadruplex or other kinds of NACs for ThT development and utilization in sensing and imaging platforms.


Assuntos
Técnicas Biossensoriais , Quadruplex G , Ácidos Nucleicos , Benzotiazóis , Corantes Fluorescentes , Técnicas Biossensoriais/métodos , Espectrometria de Fluorescência/métodos
3.
Nano Lett ; 24(15): 4336-4345, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38567915

RESUMO

This study demonstrates the conceptual design and fabrication of a vertically integrated monolithic (VIM) neuromorphic device. The device comprises an n-type SnO2 nanowire bottom channel connected by a shared gate to a p-type P3HT nanowire top channel. This architecture establishes two distinct neural pathways with different response behaviors. The device generates excitatory and inhibitory postsynaptic currents, mimicking the corelease mechanism of bilingual synapses. To enhance the signal processing efficiency, we employed a bipolar spike encoding strategy to convert fluctuating sensory signals to spike trains containing positive and negative pulses. Utilizing the neuromorphic platform for synaptic processing, physiological signals featuring bidirectional fluctuations, including electrocardiogram and breathing signals, can be classified with an accuracy of over 90%. The VIM device holds considerable promise as a solution for developing highly integrated neuromorphic hardware for healthcare and edge intelligence applications.


Assuntos
Nanofios , Sinapses
4.
J Hepatol ; 80(6): 913-927, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38340812

RESUMO

BACKGROUND & AIMS: Treatments directly targeting fibrosis remain limited. Given the unique intrinsic features of macrophages and their capacity to engraft in the liver, we genetically engineered bone marrow-derived macrophages with a chimeric antigen receptor (CAR) to direct their phagocytic activity against hepatic stellate cells (HSCs) in multiple mouse models. This study aimed to demonstrate the therapeutic efficacy of CAR macrophages (CAR-Ms) in mouse models of fibrosis and cirrhosis and to elucidate the underlying mechanisms. METHODS: uPAR expression was studied in patients with fibrosis/cirrhosis and in murine models of liver fibrosis, including mice treated with carbon tetrachloride, a 5-diethoxycarbonyl-1, 4-dihydrocollidine diet, or a high-fat/cholesterol/fructose diet. The safety and efficacy of CAR-Ms were evaluated in vitro and in vivo. RESULTS: Adoptive transfer of CAR-Ms resulted in a significant reduction in liver fibrosis and the restoration of function in murine models of liver fibrosis. CAR-Ms modulated the hepatic immune microenvironment to recruit and modify the activation of endogenous immune cells to drive fibrosis regression. These CAR-Ms were able to recruit and present antigens to T cells and mount specific antifibrotic T-cell responses to reduce fibroblasts and liver fibrosis in mice. CONCLUSION: Collectively, our findings demonstrate the potential of using macrophages as a platform for CAR technology to provide an effective treatment option for liver fibrosis. CAR-Ms might be developed for treatment of patients with liver fibrosis. IMPACT AND IMPLICATIONS: Liver fibrosis is an incurable condition that afflicts millions of people globally. Despite the clear clinical need, therapies for liver fibrosis are limited. Our findings provide the first preclinical evidence that chimeric antigen receptor (CAR)-macrophages (CAR-Ms) targeting uPAR can attenuate liver fibrosis and cirrhosis. We show that macrophages expressing this uPAR CAR exert a direct antifibrotic effect and elicit a specific T-cell response that augments the immune response against liver fibrosis. These findings demonstrate the potential of using CAR-Ms as an effective cell-based therapy for the treatment of liver fibrosis.


Assuntos
Modelos Animais de Doenças , Cirrose Hepática , Macrófagos , Receptores de Antígenos Quiméricos , Animais , Camundongos , Macrófagos/imunologia , Macrófagos/metabolismo , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Cirrose Hepática/terapia , Cirrose Hepática/imunologia , Humanos , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/imunologia , Masculino , Camundongos Endogâmicos C57BL , Feminino , Transferência Adotiva/métodos
5.
Small ; 20(2): e2304852, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37658499

RESUMO

Riboswitches have received significant attention over the last two decades for their multiple functionalities and great potential for applications in various fields. This article highlights and reviews the recent advances in biosensing and biotherapy. These fields involve a wide range of applications, such as food safety detection, environmental monitoring, metabolic engineering, live cell imaging, wearable biosensors, antibacterial drug targets, and gene therapy. The discovery, origin, and optimization of riboswitches are summarized to help readers better understand their multidimensional applications. Finally, this review discusses the multidimensional challenges and development of riboswitches in order to further expand their potential for novel applications.


Assuntos
Técnicas Biossensoriais , Riboswitch , Técnicas Biossensoriais/métodos , Terapia Biológica , Antibacterianos
6.
Small ; 20(25): e2307995, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38212277

RESUMO

A simple, reliable method for identifying ß-lactoglobulin (ß-LG) in dairy products is needed to protect those with ß-LG allergies. A common, practical strategy for target detection is designing simplified nucleic acid nanodevices by integrating functional components. This work presents a label-free modular ß-LG aptasensor consisting of an aptamer-loop G-quadruplex (G4), the working conformation of which is regulated by conformational antagonism to ensure respective module functionality and the related signal transduction. The polymorphic conformations of the module-fused sequence are systematically characterized, and the cause is revealed as shifting antagonistic equilibrium. Combined with conformational folding dynamics, this helped regulate functional conformations by fine-tuning the sequences. Furthermore, the principle of specific ß-LG detection by parallel G4 topology is examined as binding on the G4 aptamer loop by ß-LG to reinforce the G4 topology and fluorescence. Finally, a label-free, assembly-free, succinct, and turn-on fluorescent aptasensor is established, achieving excellent sensitivity across five orders of magnitude, rapidly detecting ß-LG within 22-min. This study provides a generalizable approach for the conformational regulation of module-fused G4 sequences and a reference model for creating simplified sensing devices for a variety of targets.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Quadruplex G , Lactoglobulinas , Lactoglobulinas/química , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos
7.
Small ; : e2401437, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38932671

RESUMO

Fluorophores with color-shifting characteristics have attracted enormous research interest in the quantitative application of RNA sensors. It reports here a simple synthesis, luminescent properties, and co-transcription ability of de-conjugated triphenylmethane leucomalachite green (LMG). This novel clusteroluminescence fluorophore is rapidly synthesized from malachite green (MG) in reductive transcription system containing dithiothreitol, emitting fluorescence in the UV region through space conjugation. The co-transcribed MG RNA aptamer (MGA) bound to the ligand, resulting in red fluorescence from the through-bond conjugation. Given the equilibrated color-shifting fluorophores, they are rationally employed in a 3WJ-based rolling circle transcription switch, with the target-aptamer acting as an activator to achieve steric allosterism. This one-pot system allows the target to compete continuously for allosteric sites, and the activated transcription switches continue to amplify MGA forward, achieving accurate Aflatoxin 1 quantification at the picomolar level in 1 h. Due to the programmability of this RNA sensor, the design method of target-competitive aptamers is standardized, making it universally applicable.

8.
Small ; 20(25): e2309031, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38258399

RESUMO

Liposomes are widely used in the biological field due to their good biocompatibility and surface modification properties. With the development of biochemistry and material science, many liposome structures and their surface functional components have been modified and optimized one by one, pushing the liposome platform from traditional to functionalized and intelligent, which will better satisfy and expand the needs of scientific research. However, a main limiting factor effecting the efficiency of liposomes is the complicated environmental conditions in the living body. Currently, in order to overcome the above problem, functionalized liposomes have become a very promising strategy. In this paper, binding strategies of liposomes with four main functional elements, namely nucleic acids, antibodies, peptides, and stimuli-responsive motif have been summarized for the first time. In addition, based on the construction characteristics of functionalized liposomes, such as drug-carrying, targeting, long-circulating, and stimulus-responsive properties, a comprehensive overview of their features and respective research progress are presented. Finally, the paper critically presents the limitations of these functionalized liposomes in the current applications and also prospectively suggests the future development directions, aiming to accelerate realization of their industrialization.


Assuntos
Lipossomos , Lipossomos/química , Humanos , Sistemas de Liberação de Medicamentos/métodos , Peptídeos/química
9.
BMC Womens Health ; 24(1): 38, 2024 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-38218823

RESUMO

BACKGROUND: Immune checkpoint inhibitors (ICIs) can improve survivals of metastatic triple negative breast cancer (mTNBC); however, we still seek circulating blood biomarkers to predict the efficacy of ICIs. MATERIALS AND METHODS: In this study, we analyzed the data of ICIs treated mTNBC collected in Anhui Medical University affiliated hospitals from 2018 to 2023. The counts of lymphocytes, monocytes, platelets, and ratio indexes (NLR, MLR, PLR) in peripheral blood were investigated via the Kaplan-Meier curves and the Cox proportional-hazards model. RESULTS: The total of 50 mTNBC patients were treated with ICIs. High level of peripheral lymphocytes and low level of NLR and MLR at baseline and post the first cycle of ICIs play the predictable role of immunotherapies. Lymphocytes counts (HR = 0.280; 95% CI: 0.095-0.823; p = 0.021) and NLR (HR = 1.150; 95% CI: 1.052-1.257; p = 0.002) are significantly correlated with overall survival. High NLR also increases the risk of disease progression (HR = 2.189; 95% CI:1.085-4.414; p = 0.029). When NLR at baseline ≥ 2.75, the hazard of death (HR = 2.575; 95% CI:1.217-5.447; p = 0.013) and disease progression (HR = 2.189; 95% CI: 1.085-4.414; p = 0.029) significantly rise. HER-2 expression and anti-tumor therapy lines are statistically correlated with survivals. CONCLUSIONS: Before the initiation of ICIs, enriched peripheral lymphocytes and poor neutrophils and NLR contribute to the prediction of survivals.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Prognóstico , Biomarcadores , Linfócitos/patologia , Progressão da Doença , Estudos Retrospectivos , Biomarcadores Tumorais
10.
Appl Opt ; 63(5): 1231-1240, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38437302

RESUMO

Green and low-carbon are the keywords of the 2022 Beijing Winter Olympic Games (WOG) and the core of sustainable development. Beijing's P M 2.5 and C O 2 emissions attracted worldwide attention during WOG. However, the complex emission sources and frequently changing weather patterns make it impossible for a single monitoring approach to meet the high-resolution, full-coverage monitoring requirements. Therefore, we proposed an active-passive remote sensing fusion method to address this issue. The haze layer height (HLH) was first retrieved from vertical aerosol profiles measured by our high-spectral-resolution lidar located near Olympic venues, which provides new insights into the nonuniform boundary layer and the residual aerosol aloft above it. Second, we developed a bootstrap aggregating (bagging) method that assimilates the lidar-based HLH, satellite-based AOD, and meteorological data to estimate the hourly P M 2.5 with 1 km resolution. The P M 2.5 at Beijing region, Bird's Nest, and Yanqing venues during WOG was 23.00±18.33, 22.91±19.48, and 16.33±10.49µg/m 3, respectively. Third, we also derived the C O 2 enhancements, C O 2 spatial gradients resulting from human activities, and annual growth rate (AGR) to estimate the performance of carbon emission management in Beijing. Based on the top-down method, the results showed an average C O 2 enhancement of 1.62 ppm with an annual decline rate of 2.92 ppm. Finally, we compared the monitoring data with six other international cities. The results demonstrated that Beijing has the largest P M 2.5 annual decline rate of 7.43µg/m 3, while the C O 2 AGR is 1.46 ppm and keeps rising, indicating Beijing is still on its way to carbon peaking and needs to strive for carbon neutrality.

11.
Sensors (Basel) ; 24(6)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38544013

RESUMO

Earth observation by remote sensing plays a crucial role in granite extraction, and many current studies use thermal infrared data from sensors such as ASTER. The challenge lies in the low spatial resolution of these satellites, hindering precise rock type identification. A breakthrough emerges with the Thermal Infrared Spectrometer (TIS) on the Sustainable Development Science Satellite 1 (SDGSAT-1) launched by the Chinese Academy of Sciences. With an exceptional 30 m spatial resolution, SDGSAT-1 TIS opens avenues for accurate granite extraction using remote sensing. This study, exemplified in Xinjiang's Karamay region, introduces the BR-ISauvola method, leveraging SDGSAT-1 TIS data. The approach combines band ratio with adaptive k-value selection using local grayscale statistical features for Sauvola thresholding. Focused on large-scale granite extraction, results show F1 scores above 70% for Otsu, Sauvola, and BR-ISauvola. Notably, BR-ISauvola achieves the highest accuracy at 82.11%, surpassing Otsu and Sauvola by 9.62% and 0.34%, respectively. This underscores the potential of SDGSAT-1 TIS data as a valuable resource for granite extraction. The proposed method efficiently utilizes spectral information, presenting a novel approach for rapid granite extraction using remote sensing TIS imagery, even in scenarios with low spectral resolution and a single data source.

12.
Nano Lett ; 23(17): 8146-8154, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37579217

RESUMO

Inspired by the helical structure and the resultant exquisite functions of biomolecules, helical polymers have received increasing attention. Here, a series of poly(3-hexylthiophene)-block-poly(phenyl isocyanide) (P3HT-b-PPI) copolymers were prepared using a simple one-pot living polymerization method. Interestingly, the P3HT80-b-PPI30 films were found to have a helical nanofiber structure. The corresponding device has superior optoelectronic properties, such as a broadened spectral response range from the visible band to the deep ultraviolet (DUV) and an approximately 5-fold longer carrier decay time after DUV light stimulation. An energy consumption of 1.44 fJ per synaptic event was obtained, which is the lowest energy consumption achieved so far with DUV light stimulation. The encryption and decryption of images are implemented using an array of devices. Finally, a photoreceptor neural pathway was constructed to achieve early warning for the recognition of the display of harmful light. This research provides an effective strategy for the development of a novel optoelectronic synaptic device.


Assuntos
Nanofibras , Polímeros/química , Polimerização , Sistema Nervoso
13.
Nano Lett ; 23(1): 8-16, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36542842

RESUMO

Emulation of the process of a biological gustatory system could benefit the reconstruction of sense of taste. Here we demonstrate the first neuromorphic gustatory system that emulates the ability of taste perception, information processing, and excessive-intake warning functions. The system integrates a chitosan-derived ion-gel sensor, SnO2 nanowire artificial synapses, and an effect-executive unit. The system accomplish perception and encoding behaviors for taste stimulation without using complex circuits and multivariate analysis, showing short response delay (<1 s), long taste memory duration (>2 h), and a wide perceptive concentration range (0.02-6 wt % salt solution). Especially, SnO2 NW artificial synapses have extremely small response voltage (1 mV), exceeding the biological level by orders of magnitude, representing so-far the highest sensitivity record. This work provides a promising strategy to develop bioinspired and biointegrated electronics with the intention of mimicking and restoring the functions of biological sensory systems.


Assuntos
Percepção Gustatória , Paladar , Paladar/fisiologia , Sinapses/fisiologia , Eletrônica , Órgãos dos Sentidos
14.
Nano Lett ; 23(18): 8743-8752, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37698378

RESUMO

A mixed-dimensional dual-channel synaptic transistor composed of inorganic nanoparticles and organic nanowires was fabricated to expand the photoelectric gain range. The device can actualize the sensitization features of the nociceptor and shows improved responsiveness to visible light. Under electrical pulses with different polarities, the apparatus exhibits reconfigurable asymmetric bidirectional plasticity. Moreover, the devices demonstrate good operational tolerance and mechanical stability, retaining more than 60% of their maximum responsiveness after 100 consecutive/bidirectional and 1000 flex/flat operations. The improved photoelectric response of the device endows a high image recognition accuracy of greater than 80%. Asymmetric bidirectional plasticity is used as punishment/reward in a psychological experiment to emulate the improvement of learning motivation and enables real-time forward and backward deflection (+7 and -25°) of artificial muscle. The mixed-dimensional optoelectronic artificial synapses with switchable behavior and electron/hole transport type have important prospects for neuromorphic processing and artificial somatosensory nerves.

15.
J Cell Mol Med ; 27(18): 2714-2729, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37469226

RESUMO

Recombinant adeno-associated virus (rAAV) is an extremely attractive vector in the in vivo delivery of gene therapy as it is safe and its genome is simple. However, challenges including low permissiveness to specific cells and restricted tissue specificity have hindered its clinical application. Based on the previous studies, epidermal growth factor receptor-protein tyrosine kinase (EGFR-PTK) negatively regulated rAAV transduction, and EGFR-positive cells were hardly permissive to rAAV transduction. We constructed a novel rAAV-miRNA133b vector, which co-expressed miRNA133b and transgene, and investigated its in vivo and in vitro transduction efficiency. Confocal microscopy, live-cell imaging, pharmacological reagents and labelled virion tracking were used to analyse the effect of miRNA133b on rAAV2 transduction and the underlying mechanisms. The results demonstrated that miRNA133b could promote rAAV2 transduction and the effects were limited to EGFR-positive cells. The increased transduction was found to be a direct result of decreased rAAV particles degradation in the cytoplasm and enhanced second-strand synthesis. ss-rAAV2-miRNA133b vector specifically increased rAAV2 transduction in EGFR-positive cells or tissues, while ss-rAAV2-Fluc-miRNA133b exerted an antitumor effect. rAAV-miRNA133b vector might emerge as a promising platform for delivering various transgene to treat EGFR-positive cell-related diseases, such as non-small-cell lung cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Vetores Genéticos/genética , Neoplasias Pulmonares/genética , Receptores ErbB/genética , Terapia Genética , Transgenes , Dependovirus/genética , Transdução Genética
16.
Neurobiol Dis ; 177: 105993, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36627028

RESUMO

Clarifying the risk factors and mechanisms that contribute to the onset of cognitive impairment following estrogen depletion is essential for improving the quality of life of older females. In the current study, using behavioral tests, 16S rDNA sequencing, in vivo and in vitro electrophysiology, optogenetics and chemogenetics, we found that high-fat diet (HFD)-accelerated impairment of hippocampus-dependent memory, gut microbiota, and hippocampal theta rhythmogenesis in ovariectomized (OVX) mice and fecal microbiota transplantation rescued these phenomena. The identification of fasting-activated medial septal neurons showed that PV+ GABAergic neurons in the medial septal area (MSA) respond to gut sensory signals. Optogenetic activation of septohippocampal PV+ GABAergic fibers (but not cholinergic fibers) significantly rescued hippocampal theta rhythmogenesis and spatial memory in HFD-fed OVX mice. Resistant starch supplementation (RSHFD) rectified the gut Prevotellaceae and considerably alleviated reduced septal gut-responsive neurons, decreased hippocampal theta rhythm, and impaired hippocampus-dependent memory in HFD-fed OVX mice. Furthermore, chemogenetic inhibition of septal PV+ GABAergic neurons reversed the neuroprotective effects of resistant starch supplementation. These findings highlight the notable gut-sensory nature of medial septal PV+ GABAergic neurons. A HFD accelerates estrogen deficiency-induced cognitive impairment by disrupting the gut Prevotellaceae-septo-hippocampal pathway. This study contributes to a better understanding of the precise gut-brain control of cognition and cognitive impairment in postmenopausal females.


Assuntos
Dieta Hiperlipídica , Memória Espacial , Feminino , Camundongos , Animais , Dieta Hiperlipídica/efeitos adversos , Qualidade de Vida , Amido Resistente/metabolismo , Amido Resistente/farmacologia , Hipocampo/metabolismo , Neurônios GABAérgicos/metabolismo , Ritmo Teta/fisiologia
17.
Anal Chem ; 95(18): 7076-7081, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37114824

RESUMO

The light-up aptamer-dimethylindole red (DIR) complexes have been applied in biochemistry analysis as promising signal transduction tools. However, the unfavorable repulsions between DIR and the long-sequence aptamer switch hinder the complex's further development, and it is urgent to engineer a feasible and efficient strategy for synchronously and rationally adjusting the DIR chemical structure and the DIR aptamer performance. Herein, we communicate a versatile docking-guided rational tailoring strategy to effectively upgrade a DNA aptamer which specifically turns on the fluorescence of a synthesized amino-functionalized DIR analogue (NH2-DIR). After optimizing with three-level tailoring strategies including molecule docking-guided tailoring, coarse tailoring, and fine tailoring, the NH2-DIR aptamer switch with higher binding affinity and specificity, considerable fluorescence-activation ability, and 40% shortened length was obtained. Integrating the experimental and docking results, the binding mechanism between NH2-DIR and the tailored aptamer was deciphered via three types of interactions.


Assuntos
Aptâmeros de Nucleotídeos , Corantes Fluorescentes , Corantes Fluorescentes/química , Carbocianinas/química , Indóis , Aptâmeros de Nucleotídeos/química
18.
Small ; 19(2): e2204782, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36412068

RESUMO

Nanozymes and amorphous nanomaterials attract great attention owing to their extraordinary properties. However, the requirements for special synthesis conditions become the bottleneck of their development. Herein, a new strategy involving the DNA-based coordination-driven self-assembly is reported for the synthesis of a novel amorphous/crystalline hetero-phase nanozyme (Fe-DNA). For the synthesis of both nanozymes and amorphous materials, this strategy is simple and controllable, avoiding the traditionally employed harsh conditions. Benefitting from the amorphous structure and the superior physicochemical properties, the synthesized Fe-DNA nanozyme is subsequently found to exhibit a smaller Michaelis constant value for hydrogen peroxide (H2 O2 ) (0.81 mm) than that of horseradish peroxidase (HRP) (3.70 mm), demonstrating the stronger affinity of the Fe-DNA nanozyme toward H2 O2 . The Fe-DNA nanozyme also shows significant peroxidase-like activity but only negligible oxidase-like activity, a characteristic which releases the corresponding assay system from oxygen interference, thereby improving the performance of the nanozyme-based sensing platform. In addition, compared with other nanozymes, the novel Fe-DNA nanozyme is degradable via phosphate; thus, mitigating potential environmental threat. This work provides novel amorphous/crystalline hetero-phase nanozymes and opens a new avenue for the design of amorphous nanomaterials and nanozymes.


Assuntos
Técnicas Biossensoriais , Peroxidase , Peroxidases/química , Oxirredutases , DNA , Peróxido de Hidrogênio
19.
Small ; 19(35): e2301048, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37078838

RESUMO

Realizing high-precise and adjustable regulation of engineering nanozyme is important in nanotechnology. Here, Ag@Pt nanozymes with excellent peroxidase-like and antibacterial effects are designed and synthesized by nucleic acid and metal ions coordination-driven one-step rapid self-assembly. The adjustable NA-Ag@Pt nanozyme is synthesized within 4 min using single-stranded nucleic acid as templates, and peroxidase-like enhancing FNA-Ag@Pt nanozyme is received by regulating functional nucleic acids (FNA) based on NA-Ag@Pt nanozyme. Both Ag@Pt nanozymes that are developed not only has simple and general synthesis approaches, but also can produce artificial precise adjustment and possess dual-functional. Moreover, when lead ion-specific aptamers as FNA are introduced to NA-Ag@Pt nanozyme, the Pb2+ aptasensor is successfully constructed by increasing electron conversion efficiency and improving the specificity of nanozyme. In addition, both nanozyme has good antibacterial properties, with ~100% and ~85% antibacterial efficiency against Escherichia coli and Staphylococcus aureus, respectively. This work provides a synthesis method of novelty dual-functional Ag@Pt nanozymes and successful application in metal ions detection and antibacterial agents.


Assuntos
Ácidos Nucleicos , Peroxidase , Peroxidases , Antibacterianos/farmacologia , Íons
20.
Small ; 19(6): e2205933, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36461678

RESUMO

The rapid, simple and low-cost preparation of DNA micro-nano-architectures remain challenging in biosensing and therapy. Polymerase chain reaction (PCR)-driven DNA micro-nano-flowers are used to construct a nanosized baicalin-compressed-aptamer-nanodrug (bcaND) via one-pot assembly for targeted and synergistic anti-obesity. In the design, the tailored Adipo-8 (tAdi-8) overhang in the PCR amplicon displays anti-obesity targeting activity, while the baicalin loaded in the bcaND by embedding the amplicon plays a three-fold role as a lipid-lowering factor, bcaND size compressor, and uncoupling protein-1 (UCP1)-raised thermogenic activator. The ingenious bcaND represents an advanced multifunctional nanomaterial capable of adjusting the morphology at an optimal 400/1 molar ratio of Mg2+ to phosphate groups, compressing the size from 2.699 µm to 214.76 nm using 1 mg/mL baicalin at a temperature of 70 °C, an effective payload with amplicons of up to 98.94%, and a maximum baicalin load of 86.21 g/g DNA. Responsive release in acidic conditions (pH 5.0) occurs within 72 h, accelerating thermogenesis via UCP1 up-regulation by 2.5-fold in 3T3-L1-preadipocytes and 13.7-fold in the white-adipose-tissue (WAT) of mice, targeting adipocytes and visceral white adipose tissue. It plays an efficient synergistic role in obesity therapy in vitro and in vivo, providing a new direction for DNA self-assembly nanotechnology.


Assuntos
Nanopartículas , Obesidade , Camundongos , Animais , Obesidade/tratamento farmacológico , Obesidade/genética , Adipócitos , Tecido Adiposo Branco/fisiologia , Nanopartículas/uso terapêutico , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA