RESUMO
Climate warming causes profound effects on structure and function of wetland ecosystem, thus affecting regional and global hydrological cycles and carbon budgets. However, how wetland plants respond to warming is still poorly understood. Here, we synthesized observations from 273 independent sites to explore responses of northern wetland plants to warming. Our results show that warming enhances biomass accumulation for vascular plants including shrubs and graminoids, whereas it reduces biomass accumulation for cryptogams including moss and lichen. This divergent response of vascular plants and cryptogams is particularly pronounced in the high latitudes where permafrost prevails. As warming continues, this divergent response is amplified, however, the reduction in cryptogams is more drastic. Warming leads to declined surface soil moisture and lowered water table, thereby shifting wetlands from a wet system dominated by cryptogams to a drier system with increased cover of vascular plants. Under a high-emission scenario of Shared Socioeconomic Pathways (SSP5), a 4.7-5.1°C mean global temperature rise will cause more than fivefold loss of cryptogams compared with current climate. As cryptogams are largely concentrated at northern high latitudes, where warming will likely be greater than the projected global mean, modification in wetland plant composition and major reduction in cryptogams are expected to occur even much earlier than 2100.
Assuntos
Traqueófitas , Áreas Alagadas , Biodiversidade , Mudança Climática , Ecossistema , Aquecimento Global , Plantas , Solo/química , TemperaturaRESUMO
Objective: To assess the stability of improvements in global respiratory virus surveillance in countries supported by the United States Centers for Disease Control and Prevention (CDC) after reductions in CDC funding and with the stress of the coronavirus disease 2019 (COVID-19) pandemic. Methods: We assessed whether national influenza surveillance systems of CDC-funded countries: (i) continued to analyse as many specimens between 2013 and 2021; (ii) participated in activities of the World Health Organization's (WHO) Global Influenza Surveillance and Response System; (iii) tested enough specimens to detect rare events or signals of unusual activity; and (iv) demonstrated stability before and during the COVID-19 pandemic. We used CDC budget records and data from the WHO Global Influenza Surveillance and Response System. Findings: While CDC reduced per-country influenza funding by about 75% over 10 years, the number of specimens tested annually remained stable (mean 2261). Reporting varied substantially by country and transmission zone. Countries funded by CDC accounted for 71% (range 61-75%) of specimens included in WHO consultations on the composition of influenza virus vaccines. In 2019, only eight of the 17 transmission zones sent enough specimens to WHO collaborating centres before the vaccine composition meeting to reliably identify antigenic variants. Conclusion: Great progress has been made in the global understanding of influenza trends and seasonality. To optimize surveillance to identify atypical influenza viruses, and to integrate molecular testing, sequencing and reporting of severe acute respiratory syndrome coronavirus 2 into existing systems, funding must continue to support these efforts.
Assuntos
COVID-19 , Vacinas contra Influenza , Influenza Humana , COVID-19/epidemiologia , COVID-19/prevenção & controle , Centers for Disease Control and Prevention, U.S. , Humanos , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Pandemias/prevenção & controle , Vigilância da População , Estados Unidos/epidemiologiaRESUMO
This work studies the molecular reaction and dynamic mechanism of iodate reduction by nitrogen(III) in aqueous solution using the ab initio molecular dynamics (AIMD) method based on density functional theory (DFT). Two possible reaction pathways (without and with H+) are proposed. The thermodynamic parameters of the proposed reaction pathways are calculated. The theoretical calculation aspects of iodate reduction, including the atomic dipole moment corrected Hirshfeld population (ADCH) atomic charge values, the intrinsic reaction coordinate (IRC) curves, the calculated interaction regional indicator (IRI) isosurfaces with the corresponding sign(λ2)ρ scatter plots, electrostatic potential (ESP) analysis and molecular reaction dynamics are discussed in-depth. The results show that the reaction pathway with H+ is confirmed based on the Gibbs free energy analysis. The transition state proved that the iodate reduction with nitrous acid undergoes four steps according to oxygen-atom deprivation. The IRC curves describe the energy change of the chemical bonds of the reactant conformations in the four steps, with an energy reduction of 71.95, 69.35, 130.15, and 125.87 kJ mol-1, respectively. The ESP interpenetration diagram and IRI isosurfaces provide detailed information on the nucleophilicity and electrophilicity of the reactant conformations. By decreasing the O atom number in HIOx (x = 1, 2, 3), the maximum positive charge decreases, and the positive charge coverage area increases, thus resulting in energy reduction and consequently a more stable conformation. Molecular reaction dynamics analytical results indicated that a relatively stable status of the reactants of the four steps was achieved after around 200 fs, and that the HIO3-HNO2 reaction released the highest energy.
RESUMO
BACKGROUND: Cibotii rhizoma (CR) is a famous traditional Chinese medicine (TCM) used to treat bleeding, rheumatism, lumbago, etc. However, its therapeutic effects and mechanism against thrombocytopenia are still unknown so far. In the study, we investigated the effects of aqueous extracts of Cibotii rhizoma (AECRs) against thrombocytopenia and its molecular mechanism. METHODS: Giemsa staining, phalloidin staining, and flow cytometry were performed to measure the effect of AECRs on the megakaryocyte differentiation in K562 and Meg-01 cells. A radiation-induced thrombocytopenia mouse model was constructed to assess the therapeutic actions of AECRs on thrombocytopenia. Network pharmacology and experimental verification were carried out to clarify its mechanism against thrombocytopenia. RESULTS: AECRs promoted megakaryocyte differentiation in K562 and Meg-01 cells and accelerated platelet recovery and megakaryopoiesis with no systemic toxicity in radiation-induced thrombocytopenia mice. The PI3K/AKT, MEK/ERK, and JAK2/STAT3 signaling pathways contributed to AECR-induced megakaryocyte differentiation. The suppression of the above signaling pathways by their inhibitors blocked AERC-induced megakaryocyte differentiation. CONCLUSIONS: AECRs can promote megakaryopoiesis and thrombopoiesis through activating PI3K/AKT, MEK/ERK, and JAK2/STAT3 signaling pathways, which has the potential to treat radiation-induced thrombocytopenia in the clinic.
Assuntos
Trombocitopenia , Trombopoese , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismoRESUMO
BACKGROUND: Thrombocytopenia has long been considered an important complication of chemotherapy and radiotherapy, which severely limits the effectiveness of cancer treatment and the overall survival of patients. However, clinical treatment options are extremely limited so far. Ruxolitinib is a potential candidate. METHODS: The impact of ruxolitinib on the differentiation and maturation of K562 and Meg-01 cells megakaryocytes (MKs) was examined by flow cytometry, Giemsa and Phalloidin staining. A mouse model of radiation-injured thrombocytopenia (RIT) was employed to evaluate the action of ruxolitinib on thrombocytopoiesis. Network pharmacology, molecular docking, drug affinity responsive target stability assay (DARTS), RNA sequencing, protein blotting and immunofluorescence analysis were applied to explore the targets and mechanisms of action of ruxolitinib. RESULTS: Ruxolitinib can stimulate MK differentiation and maturation in a dose-dependent manner and accelerates recovery of MKs and thrombocytopoiesis in RIT mice. Biological targeting analysis showed that ruxolitinib binds directly to Toll Like Receptor 2 (TLR2) to activate Rac1/cdc42/JNK, and this action was shown to be blocked by C29, a specific inhibitor of TLR2. CONCLUSIONS: Ruxolitinib was first identified to facilitate MK differentiation and thrombocytopoiesis, which may alleviate RIT. The potential mechanism of ruxolitinib was to promote MK differentiation via activating the Rac1/cdc42/JNK pathway through binding to TLR2.
Assuntos
Sistema de Sinalização das MAP Quinases , Trombocitopenia , Animais , Camundongos , Trombopoese , Receptor 2 Toll-Like/metabolismo , Simulação de Acoplamento Molecular , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismoRESUMO
Warming in the Arctic has been more apparent in the non-growing season than in the typical growing season. In this context, methane (CH4 ) emissions in the non-growing season, particularly in the shoulder seasons, account for a substantial proportion of the annual budget. However, CH4 emissions in spring and autumn shoulders are often underestimated by land models and measurements due to limited data availability and unknown mechanisms. This study investigates CH4 emissions during spring thaw and autumn freeze using eddy covariance CH4 measurements from three Arctic sites with multi-year observations. We find that the shoulder seasons contribute to about a quarter (25.6 ± 2.3%, mean ± SD) of annual total CH4 emissions. Our study highlights the three to four times higher contribution of autumn freeze CH4 emission to total annual emission than that of spring thaw. Autumn freeze exhibits significantly higher CH4 flux (0.88 ± 0.03 mg m-2 hr-1 ) than spring thaw (0.48 ± 0.04 mg m-2 hr-1 ). The mean duration of autumn freeze (58.94 ± 26.39 days) is significantly longer than that of spring thaw (20.94 ± 7.79 days), which predominates the much higher cumulative CH4 emission during autumn freeze (1,212.31 ± 280.39 mg m-2 year-1 ) than that during spring thaw (307.39 ± 46.11 mg m-2 year-1 ). Near-surface soil temperatures cannot completely reflect the freeze-thaw processes in deeper soil layers and appears to have a hysteresis effect on CH4 emissions from early spring thaw to late autumn freeze. Therefore, it is necessary to consider commonalities and differences in CH4 emissions during spring thaw versus autumn freeze to accurately estimate CH4 source from tundra ecosystems for evaluating carbon-climate feedback in Arctic.
Assuntos
Ecossistema , Metano , Regiões Árticas , Estações do Ano , Solo , TundraRESUMO
The Amazon Basin is experiencing climate change, altered hydrological cycles, and forest loss. The processes causing increased fires are complex, and therefore cannot be attributed to climate change or human-induced deforestation alone. Here, we show why the Amazon fires must be understood across spatial scales within the regional coupled system.
Assuntos
Incêndios , Árvores , Mudança Climática , Florestas , HumanosRESUMO
Methane (CH4) emissions from pan-Arctic wetlands provide a potential positive feedback to global warming. However, the differences in CH4 emissions across wetland types in these regions have not been well understood. We synthesized approximately 9000 static chamber CH4 measurements during the growing season from 83 sites across pan-Arctic regions. We highlighted spatial variations of CH4 emissions corresponding to environmental heterogeneity across wetland types. CH4 emission is the highest in fens, followed by marshes, bogs, and the lowest in swamps. This gradient is controlled by the water table, soil temperature, and dominant plant functional types and their interactions. The water table position for maximum CH4 emission is below, close to, and above the ground surface in bogs, marshes/fens, and swamps, respectively. The temperature sensitivity (Q10) of CH4 emissions varied among different wetland types, ranging from the lowest in swamps to the highest in fens. The interactive impact of temperature and the water table positions on CH4 emissions are regulated with dominant plant functional types. CH4 emissions from wetlands dominated by vascular plants rely more on species composition than that dominated by non-vascular plants. Wetlands with greater abundance of graminoids (e.g., fens) have higher CH4 emissions than tree-dominated wetlands (e.g., swamps). This synthesis emphasizes the role of wetland heterogeneity in determining the strength of CH4 emissions.
Assuntos
Gases de Efeito Estufa , Áreas Alagadas , Regiões Árticas , Dióxido de Carbono , Gases de Efeito Estufa/análise , Metano/análise , SoloRESUMO
Understanding the spatiotemporal patterns of emergence and circulation of new human seasonal influenza virus variants is a key scientific and public health challenge. The global circulation patterns of influenza A/H3N2 viruses are well characterized, but the patterns of A/H1N1 and B viruses have remained largely unexplored. Here we show that the global circulation patterns of A/H1N1 (up to 2009), B/Victoria, and B/Yamagata viruses differ substantially from those of A/H3N2 viruses, on the basis of analyses of 9,604 haemagglutinin sequences of human seasonal influenza viruses from 2000 to 2012. Whereas genetic variants of A/H3N2 viruses did not persist locally between epidemics and were reseeded from East and Southeast Asia, genetic variants of A/H1N1 and B viruses persisted across several seasons and exhibited complex global dynamics with East and Southeast Asia playing a limited role in disseminating new variants. The less frequent global movement of influenza A/H1N1 and B viruses coincided with slower rates of antigenic evolution, lower ages of infection, and smaller, less frequent epidemics compared to A/H3N2 viruses. Detailed epidemic models support differences in age of infection, combined with the less frequent travel of children, as probable drivers of the differences in the patterns of global circulation, suggesting a complex interaction between virus evolution, epidemiology, and human behaviour.
Assuntos
Variação Antigênica , Vírus da Influenza A/genética , Vírus da Influenza B/genética , Influenza Humana/epidemiologia , Influenza Humana/virologia , Fatores Etários , Saúde Global , Humanos , Vírus da Influenza A/classificação , Vírus da Influenza B/classificação , Filogenia , Filogeografia , Estações do AnoRESUMO
Frequent Amazonian fires over the last decade have raised the alarm about the fate of the Earth's most biodiverse forest. The increased fire frequency has been attributed to altered hydrological cycles. However, observations over the past few decades have demonstrated hydrological changes that may have opposing impacts on fire, including higher basin-wide precipitation and increased drought frequency and severity. Here, we use multiple satellite observations and climate reanalysis datasets to demonstrate compelling evidence of increased fire susceptibility in response to climate regime shifts across Amazonia. We show that accumulated forest loss since 2000 warmed and dried the lower atmosphere, which reduced moisture recycling and resulted in increased drought extent and severity, and subsequent fire. Extremely dry and wet events accompanied with hot days have been more frequent in Amazonia due to climate shift and forest loss. Simultaneously, intensified water vapor transport from the tropical Pacific and Atlantic increased high-altitude atmospheric humidity and heavy rainfall events, but those events did not alleviate severe and long-lasting droughts. Amazonia fire risk is most significant in the southeastern region where tropical savannas undergo long seasonally dry periods. We also find that fires have been expanding through the wet-dry transition season and northward to savanna-forest transition and tropical seasonal forest regions in response to increased forest loss at the "Arc of Deforestation." Tropical forests, which have adapted to historically moist conditions, are less resilient and easily tip into an alternative state. Our results imply forest conservation and fire protection options to reduce the stress from positive feedback between forest loss, climate change, and fire.
Assuntos
Florestas , Árvores , Brasil , Mudança Climática , Secas , Clima TropicalRESUMO
The current study analyzes the contribution of 10 water quality parameters (including pH, turbidity, conductivity, total dissolved solids (TDS), hardness, total organic carbon (TOC), alkalinity, calcium ions, chlorides and sulfates) to corrosion extent of stainless steel valves taken from different locations in a reverse osmosis system of a reclaimed water plant. The valves were in service for 5 years. Raman spectroscopy and X-ray photoelectron spectroscopy analyses are conducted to quantify corrosion products on different valves under various water quality conditions. On that basis, bivariate and multivariate regression analyses between the 10 water quality parameters and the corrosion extent of valve specimens (represented by metal loss percentage (MLP) values) are carried out to check the contribution of those water quality parameters to MLP. The results indicate that the proportions of metal oxides as corrosion products vary according to the corrosion extent of the valves. Although no linear correlation is found, all 10 water quality parameters except for pH show a significant positive correlation with the MLP values of the valve specimens. Moreover, results of multivariate regression suggest that the variation of MLP can be explained by turbidity, TDS, TOC and sulfates. A positive contribution of turbidity, TDS and TOC to MLP is observed, whereas the contribution of sulfates is negative. The results from the current work help to identify the reasons for water quality-induced failure of stainless steel equipment in RO systems.
Assuntos
Aço Inoxidável , Purificação da Água , Qualidade da Água , Corrosão , Osmose , Abastecimento de ÁguaRESUMO
CDC collects, compiles, and analyzes data on influenza activity and viruses in the United States. During September 30, 2018-February 2, 2019,* influenza activity in the United States was low during October and November, increased in late December, and remained elevated through early February. As of February 2, 2019, this has been a low-severity influenza season (1), with a lower percentage of outpatient visits for influenza-like illness (ILI), lower rates of hospitalization, and fewer deaths attributed to pneumonia and influenza, compared with recent seasons. Influenza-associated hospitalization rates among children are similar to those observed in influenza A(H1N1)pdm09 predominant seasons; 28 influenza-associated pediatric deaths occurring during the 2018-19 season have been reported to CDC. Whereas influenza A(H1N1)pdm09 viruses predominated in most areas of the country, influenza A(H3N2) viruses have predominated in the southeastern United States, and in recent weeks accounted for a growing proportion of influenza viruses detected in several other regions. Small numbers of influenza B viruses (<3% of all influenza-positive tests performed by public health laboratories) also were reported. The majority of the influenza viruses characterized antigenically are similar to the cell culture-propagated reference viruses representing the 2018-19 Northern Hemisphere influenza vaccine viruses. Health care providers should continue to offer and encourage vaccination to all unvaccinated persons aged ≥6 months as long as influenza viruses are circulating. Finally, regardless of vaccination status, it is important that persons with confirmed or suspected influenza who have severe, complicated, or progressive illness; who require hospitalization; or who are at high risk for influenza complications be treated with antiviral medications.
Assuntos
Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Vírus da Influenza B/isolamento & purificação , Influenza Humana/epidemiologia , Vigilância da População , Adolescente , Adulto , Idoso , Criança , Mortalidade da Criança , Pré-Escolar , Farmacorresistência Viral , Hospitalização/estatística & dados numéricos , Humanos , Lactente , Mortalidade Infantil , Recém-Nascido , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza B/efeitos dos fármacos , Vírus da Influenza B/genética , Vacinas contra Influenza/química , Influenza Humana/mortalidade , Influenza Humana/prevenção & controle , Influenza Humana/virologia , Pessoa de Meia-Idade , Pacientes Ambulatoriais/estatística & dados numéricos , Pneumonia/mortalidade , Prevalência , Estações do Ano , Estados Unidos/epidemiologia , Adulto JovemRESUMO
Influenza activity* in the United States during the 2018-19 season (September 30, 2018-May 18, 2019) was of moderate severity (1). Nationally, influenza-like illness (ILI) activity began increasing in November, peaked during mid-February, and returned to below baseline in mid-April; the season lasted 21 weeks,§ making it the longest season in 10 years. Illness attributed to influenza A viruses predominated, with very little influenza B activity. Two waves of influenza A were notable during this extended season: influenza A(H1N1)pdm09 viruses from October 2018 to mid-February 2019 and influenza A(H3N2) viruses from February through May 2019. Compared with the 2017-18 influenza season, rates of hospitalization this season were lower for adults, but were similar for children. Although influenza activity is currently below surveillance baselines, testing for seasonal influenza viruses and monitoring for novel influenza A virus infections should continue year-round. Receiving a seasonal influenza vaccine each year remains the best way to protect against seasonal influenza and its potentially severe consequences.
Assuntos
Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Vírus da Influenza B/isolamento & purificação , Influenza Humana/epidemiologia , Vigilância da População , Adolescente , Adulto , Idoso , Antivirais/farmacologia , Criança , Mortalidade da Criança , Pré-Escolar , Efeitos Psicossociais da Doença , Farmacorresistência Viral , Hospitalização/estatística & dados numéricos , Humanos , Lactente , Mortalidade Infantil , Recém-Nascido , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza B/efeitos dos fármacos , Vírus da Influenza B/genética , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/química , Influenza Humana/mortalidade , Influenza Humana/prevenção & controle , Influenza Humana/virologia , Pessoa de Meia-Idade , Pacientes Ambulatoriais/estatística & dados numéricos , Pneumonia/mortalidade , Estações do Ano , Índice de Gravidade de Doença , Estados Unidos/epidemiologia , Adulto JovemRESUMO
During May 19-September 28, 2019,* low levels of influenza activity were reported in the United States, with cocirculation of influenza A and influenza B viruses. In the Southern Hemisphere seasonal influenza viruses circulated widely, with influenza A(H3) predominating in many regions; however, influenza A(H1N1)pdm09 and influenza B viruses were predominant in some countries. In late September, the World Health Organization (WHO) recommended components for the 2020 Southern Hemisphere influenza vaccine and included an update to the A(H3N2) and B/Victoria-lineage components. Annual influenza vaccination is the best means for preventing influenza illness and its complications, and vaccination before influenza activity increases is optimal. Health care providers should recommend vaccination for all persons aged ≥6 months who do not have contraindications to vaccination (1).
Assuntos
Saúde Global/estatística & dados numéricos , Vacinas contra Influenza/química , Influenza Humana/epidemiologia , Vigilância da População , Farmacorresistência Viral , Humanos , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Vírus da Influenza B/efeitos dos fármacos , Vírus da Influenza B/genética , Vírus da Influenza B/isolamento & purificação , Influenza Humana/virologia , Estações do Ano , Estados Unidos/epidemiologiaRESUMO
The emergence of severe acute respiratory syndrome (SARS) underscored the importance of influenza detection and response in China. From 2004, the Chinese National Influenza Center (CNIC) and the United States Centers for Disease Control and Prevention (USCDC) initiated Cooperative Agreements to build capacity in influenza surveillance in China.From 2004 to 2014, CNIC and USCDC collaborated on the following activities: 1) developing human technical expertise in virology and epidemiology in China; 2) developing a comprehensive influenza surveillance system by enhancing influenza-like illness (ILI) reporting and virological characterization; 3) strengthening analysis, utilization and dissemination of surveillance data; and 4) improving early response to influenza viruses with pandemic potential.Since 2004, CNIC expanded its national influenza surveillance and response system which, as of 2014, included 408 laboratories and 554 sentinel hospitals. With support from USCDC, more than 2500 public health staff from China received virology and epidemiology training, enabling > 98% network laboratories to establish virus isolation and/or nucleic acid detection techniques. CNIC established viral drug resistance surveillance and platforms for gene sequencing, reverse genetics, serologic detection, and vaccine strains development. CNIC also built a bioinformatics platform to strengthen data analysis and utilization, publishing weekly on-line influenza surveillance reports in English and Chinese. The surveillance system collects 200,000-400,000 specimens and tests more than 20,000 influenza viruses annually, which provides valuable information for World Health Organization (WHO) influenza vaccine strain recommendations. In 2010, CNIC became the sixth WHO Collaborating Centre for Influenza. CNIC has strengthened virus and data sharing, and has provided training and reagents for other countries to improve global capacity for influenza control and prevention.The collaboration's successes were built upon shared mission and values, emphasis on long-term capacity development and sustainability, and leadership commitment.
Assuntos
Saúde Global , Influenza Humana/prevenção & controle , Laboratórios/organização & administração , Pandemias/prevenção & controle , Vigilância da População/métodos , Centers for Disease Control and Prevention, U.S. , China , Humanos , Vacinas contra Influenza/uso terapêutico , Influenza Humana/epidemiologia , Cooperação Internacional , Orthomyxoviridae , Estados Unidos , Organização Mundial da SaúdeRESUMO
Risk of cross-connection is becoming higher due to greater construction of potable-reclaimed water dual distribution systems. Cross-connection events can result in serious health concerns and reduce public confidence in reclaimed water. Thus, reliable, cost-effective and real-time online detection methods for early warning are required. The current study carried out pilot-scale experiments to simulate potable-reclaimed water pipe cross-connection events for different mixing ratios (from 30% to 1%) using machine learning methods based on multiple conventional water quality parameters. The parameters included residual chlorine, pH, turbidity, temperature, conductivity, oxidation-reduction potential and chemical oxygen demand. The results showed that correlated variation occurred among water quality parameters at the time of the cross-connection event. A single parameter-based method can be effective at high mixing ratios, but not at low mixing ratios. The direct supporting vector machine (SVM)-based method managed to overcome this drawback, but coped poorly with abnormal readings of water parameter sensors. In that respect, a Pearson correlation coefficient (PCC)-SVM-based method was developed. It provided not only high detection performance under normal conditions, but also remained reliable when abnormal readings occurred. The detection accuracy and true positive rate of this method was still over 88%, and the false positive rate was below 12%, given a sudden variation of an individual water quality parameter. The receiver operating characteristic curves further confirmed the promising practical applicability of this PCC-SVM-based method for early detection of cross-connection events.
Assuntos
Água Potável , Fumar Cachimbo de Água , Águas Residuárias , Qualidade da Água , Abastecimento de ÁguaRESUMO
Background: Although ferret antisera used in influenza surveillance did not detect antigenic drift of A(H1N1)pdm09 viruses during the 2015-2016 season, low vaccine effectiveness was reported in adults. We investigated the immune basis of low responses to circulating A(H1N1)pdm09 viruses after vaccination. Methods: Prevaccination and postvaccination serum samples collected from >300 adults (aged 18-49 years) in 6 seasons (2010-2011 to 2015-2016) were analyzed using hemagglutination inhibition assays to evaluate the antibody responses to 13 A(H1N1) viruses circulated from 1977 to 2016. Microneutralization and serum adsorption assays were used to verify the 163K and 223R specificity of antibodies. Results: Individual antibody profiles to A(H1N1) viruses revealed 3 priming patterns: USSR/77, TW/86, or NC/99 priming. More than 20% of adults had reduced titers to cell-propagated circulating 6B.1 and 6B.2 A(H1N1)pdm09 viruses compared with the A/California/07/2009 vaccine virus X-179A. Significantly reduced antibody reactivity to circulating viruses bearing K163Q was observed only in the USSR/77-primed cohort, whereas significantly lower reactivity caused by egg-adapted Q223R change was detected across all 3 cohorts. Conclusion: Both 163K specificity driven by immune priming and 223R specificity from egg-adapted changes in the vaccine contributed to low responses to circulating A(H1N1)pdm09 viruses after vaccination. Our study highlights the need to incorporate human serology in influenza surveillance and vaccine strain selection.
Assuntos
Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Influenza Humana/virologia , Adolescente , Adulto , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Humanos , Influenza Humana/sangue , Pessoa de Meia-Idade , Adulto JovemRESUMO
Influenza virologic surveillance is critical each season for tracking influenza circulation, following trends in antiviral drug resistance, detecting novel influenza infections in humans, and selecting viruses for use in annual seasonal vaccine production. We developed a framework and process map for characterizing the landscape of US influenza virologic surveillance into 5 tiers of influenza testing: outpatient settings (tier 1), inpatient settings and commercial laboratories (tier 2), state public health laboratories (tier 3), National Influenza Reference Center laboratories (tier 4), and Centers for Disease Control and Prevention laboratories (tier 5). During the 2015-16 season, the numbers of influenza tests directly contributing to virologic surveillance were 804,000 in tiers 1 and 2; 78,000 in tier 3; 2,800 in tier 4; and 3,400 in tier 5. With the release of the 2017 US Pandemic Influenza Plan, the proposed framework will support public health officials in modeling, surveillance, and pandemic planning and response.
Assuntos
Vírus da Influenza A , Vírus da Influenza B , Influenza Humana/epidemiologia , Influenza Humana/virologia , Humanos , Vigilância da População , Prevalência , Estados Unidos/epidemiologiaRESUMO
Influenza activity in the United States was low during October 2018, and, although it increased slowly during November, activity remains low across most of the country.* During the week ending December 1, 2018, the percentage of outpatient visits for influenza-like illness (ILI) was equal to the national baseline§ (Figure) and was at or slightly above the region-specific baseline in four of the 10 U.S. Department of Health and Human Services regions¶ (Regions 4 and 7-9). The majority of jurisdictions experienced minimal or low ILI activity since September 30; however, two experienced moderate ILI activity, and two experienced high ILI activity** during the week ending December 1. The percentage of deaths attributed to pneumonia and influenza remains below the epidemic threshold, and the rate of influenza-associated hospitalizations remains low. Five laboratory-confirmed, influenza-associated pediatric deaths occurring since September 30 have been reported to CDC. During the week ending December 1, the majority of jurisdictions (40 states, the District of Columbia, Puerto Rico, and U.S. Virgin Islands) reported sporadic or local geographic spread of influenza activity, nine states reported regional activity, and one state reported widespread activity.§§.
Assuntos
Influenza Humana/epidemiologia , Vigilância da População , Assistência Ambulatorial , Humanos , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Vírus da Influenza A/isolamento & purificação , Vírus da Influenza B/isolamento & purificação , Influenza Humana/prevenção & controle , Influenza Humana/virologia , Estações do Ano , Estados Unidos/epidemiologiaRESUMO
During May 20-October 13, 2018,* low levels of influenza activity were reported in the United States, with a mix of influenza A and B viruses circulating. Seasonal influenza activity in the Southern Hemisphere was low overall, with influenza A(H1N1)pdm09 predominating in many regions. Antigenic testing of available influenza A and B viruses indicated that no significant antigenic drift in circulating viruses had emerged. In late September, the components for the 2019 Southern Hemisphere influenza vaccine were selected and included an incremental update to the A(H3N2) vaccine virus used in egg-based vaccine manufacturing; no change was recommended for the A(H3N2) component of cell-manufactured or recombinant influenza vaccines. Annual influenza vaccination is the best method for preventing influenza illness and its complications, and all persons aged ≥6 months who do not have contraindications should receive influenza vaccine, preferably before the onset of influenza circulation in their community, which often begins in October and peaks during December-February. Health care providers should offer vaccination by the end of October and should continue to recommend and administer influenza vaccine to previously unvaccinated patients throughout the 2018-19 influenza season (1). In addition, during May 20-October 13, a small number of nonhuman influenza "variant" virus infections were reported in the United States; most were associated with exposure to swine. Although limited human-to-human transmission might have occurred in one instance, no ongoing community transmission was identified. Vulnerable populations, especially young children and other persons at high risk for serious influenza complications, should avoid swine barns at agricultural fairs, or close contact with swine.§.