Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Heliyon ; 10(1): e23313, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38148795

RESUMO

Objective: To investigate the mechanism of the six-method massage antipyretic process (SMAP) and its influence on the body's metabolic state. Methods: The random number table method was used to divide 24 New Zealand 2-month-old rabbits with qualified basal body temperature into a control group, model group and massage group (n = 8 per group). The model group and massage groups were injected with 0.5 µg/ml lipopolysaccharide (1 ml/kg) into the auricular vein, and the control group was injected with the same amount of normal saline at the same temperature. One hour after modelling, the massage group was given SMAP (opening Tianmen, pushing Kangong, rubbing Taiyang, rubbing Erhougaogu, clearing the Tianheshui and pushing the spine). The change of anal temperature 5 h after moulding was recorded to clarify the antipyretic effect. Results: After modelling, the rectal temperature of the juvenile rabbits in the three groups increased. The rectal temperature of the model group was higher than that of the control group 5 h after modelling, and the rectal temperature of the massage group was lower than that of the model group (P < 0.05). The antipyretic mechanism is related to the regulation of the synthesis of phenylalanine, tyrosine and tryptophan, as well as the pentose phosphate pathway. Compared with the model group, the plasma interleukin (IL)-1, IL-6, interferon-gamma, toll-like receptor 4, nuclear factor κB, the mechanistic target of rapamycin complex 1, indoleamine 2,3-dioxygenase 1, aryl hydrocarbon receptor, liver aspartate transaminase (AST), alanine transaminase (ALT) and l-glutamate dehydrogenase (L-GLDH) expression in the massage group were significantly decreased (P < 0.05). Compared with the model group, the massage group had significantly reduced AST, ALT and L-GLDH expression in plasma (P < 0.05). Conclusion: The mechanism of SMAP therapy is related to regulating the expression of peripheral inflammatory factors and metabolic pathways.

2.
Pest Manag Sci ; 80(6): 2587-2595, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38265118

RESUMO

BACKGROUND: Cry1Ab has emerged as a bio-insecticide to control Spodoptera litura (Lepidoptera: Noctuidae). However, the sublethal effects of Cry1Ab on the physiological changes and molecular level of S. litura have not been well documented. Our aims in this study were to assess the sublethal effect of Cry1Ab on S. litura, including midgut and Malpighian tubules as targets. RESULTS: After sublethal Cry1Ab exposure, distinct histological alterations were mainly observed in the midgut. Furthermore, the results of comparative RNA sequencing and tandem mass tag-based proteomics showed that, in the midgut, most differential expression genes (DEGs) were up-regulated and significantly enriched in the serine protease activity pathway, and up-regulated differential expression proteins (DEPs) were mainly associated with the oxidative phosphorylation pathway, whereas the down-regulated involved in the ribosome pathways. In the Malpighian tubules, DEGs and DEPs were significantly enriched in the ribosome pathway. We proposed that ribosome may act as a universal target in energy metabolism with other pathways via the results of protein-protein interaction analysis. Further, by verification of the mRNA expression of some Cry protein receptor and detoxification genes after Cry1Ab treatment, it was suggested that the ribosomal proteins (RPs) possibly participate in influencing the Bt-resistance of S. litura larvae under sublethal Cry1Ab exposure. CONCLUSION: Under sublethal Cry1Ab exposure, the midgut of S. litura was damaged, and the proteotranscriptomic analysis elucidated that Cry1Ab disrupted the energy homeostasis of larvae. Furthermore, we emphasized the potential role of ribosomes in sublethal Cry1Ab exposure. © 2024 Society of Chemical Industry.


Assuntos
Toxinas de Bacillus thuringiensis , Endotoxinas , Proteínas Hemolisinas , Larva , Túbulos de Malpighi , Spodoptera , Animais , Spodoptera/efeitos dos fármacos , Spodoptera/genética , Spodoptera/metabolismo , Spodoptera/crescimento & desenvolvimento , Túbulos de Malpighi/efeitos dos fármacos , Túbulos de Malpighi/metabolismo , Larva/efeitos dos fármacos , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Transcriptoma , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/metabolismo , Inseticidas/toxicidade , Proteoma , Proteômica , Sistema Digestório/efeitos dos fármacos , Sistema Digestório/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA