Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Drug Dev Res ; 85(5): e22241, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39104176

RESUMO

The role of KRAS mutation in non-small cell lung cancer (NSCLC) initiation and progression is well-established. However, "undruggable" KRAS protein poses the research of small molecule inhibitors a significant challenge. Addressing this, proteolysis-targeting chimeras (PROTACs) have become a cutting-edge treatment method, emphasizing protein degradation. A modified ethanol injection method was employed in this study to formulate liposomes encapsulating PROTAC drug LC-2 (LC-2 LPs). Precise surface modifications using cell-penetrating peptide R8 yielded R8-LC-2 liposomes (R8-LC-2 LPs). Comprehensive cellular uptake and cytotoxicity studies unveiled that R8-LC-2 LPs depended on concentration and time, showcasing the superior performance of R8-LC-2 LPs compared to normal liposomes. In vivo pharmacokinetic profiles demonstrated the capacity of DSPE-PEG2000 to prolong the circulation time of LC-2, leading to higher plasma concentrations compared to free LC-2. In vivo antitumor efficacy research underscored the remarkable ability of R8-LC-2 LPs to effectively suppress tumor growth. This study contributed to the exploration of enhanced therapeutic strategies for NSCLC, specifically focusing on the development of liposomal PROTACs targeting the "undruggable" KRAS protein. The findings provide valuable insights into the potential of this innovative approach, offering prospects for improved drug delivery and heightened antitumor efficacy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Lipossomos , Neoplasias Pulmonares , Proteólise , Proteínas Proto-Oncogênicas p21(ras) , Animais , Humanos , Camundongos , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Linhagem Celular Tumoral , Peptídeos Penetradores de Células , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Fosfatidiletanolaminas/química , Polietilenoglicóis/química , Proteólise/efeitos dos fármacos , Quimera de Direcionamento de Proteólise/administração & dosagem , Quimera de Direcionamento de Proteólise/farmacocinética , Quimera de Direcionamento de Proteólise/uso terapêutico , Proteínas Proto-Oncogênicas p21(ras)/genética , Ratos
2.
Nanomaterials (Basel) ; 14(9)2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38727392

RESUMO

Lead-cooled fast reactors exhibit strong inherent safety performance and good economic features, while material degradation due to corrosion and irradiation is still challenging. Oxide dispersion-strengthened steels are one of the promising candidates for fuel cladding materials. The effects of both irradiation and corrosion on ODS steel need to be further studied. In this work, MX-ODS steel was irradiated by Fe ions at 500 °C up to 46 dpa. Later, the as-received specimen and the irradiated specimen were used to conduct corrosion tests in oxygen-saturated Pb at 550 °C for 1 h. In the as-received specimen, discontinuous oxides penetrated by Pb and Pb in contact with steel matrix were observed, demonstrating unsatisfactory corrosion resistance of the material. However, in the irradiated specimen after corrosion experiment, a protective oxide layer formed and prevented Pb attack. The oxidation behavior differences between the two specimens can be attributed to the defects produced by irradiation and the structural discrepancy in oxides caused by the formation process. A possible mechanism of irradiation on the corrosion is discussed. In the as-received specimen, Fe atoms loss led to voids in the oxides, and lead penetrated the oxides through these voids. In the irradiated specimen, defects left by previous irradiation helped to form a more uniform oxide layer. The adhesive outer magnetite oxide and the Fe ions generated from where grain boundary oxidation developed retarded the presence of voids and made the oxide layer protective.

3.
PeerJ ; 11: e16545, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38107584

RESUMO

Plasminogen activator inhibitor-1 (PAI-1), a key regulator of the fibrinolytic system, is also intimately involved in the fibrosis. Although PAI-1 may be involved in the occurrence of atrial fibrillation (AF) and thrombosis in the elderly, but whether it participated in aging-related atrial fibrosis and the detailed mechanism is still unclear. We compared the transcriptomics data of young (passage 4) versus senescent (passage 14) human atrial fibroblasts and found that PAI-1 was closely related to aging-related fibrosis. Aged mice and senescent human and mouse atrial fibroblasts underwent electrophysiological and biochemical studies. We found that p300, p53, and PAI-1 protein expressions were increased in the atrial tissue of aged mice and senescent human and mouse atrial fibroblasts. Curcumin or C646 (p300 inhibitor), or p300 knockdown inhibited the expression of PAI-1 contributing to reduced atrial fibroblasts senescence, atrial fibrosis, and the AF inducibility. Furthermore, p53 knockdown decreased the protein expression of PAI-1 and p21 in senescent human and mouse atrial fibroblasts. Our results suggest that p300/p53/PAI-1 signaling pathway participates in the mechanism of atrial fibrosis induced by aging, which provides new sights into the treatment of elderly AF.


Assuntos
Inibidor 1 de Ativador de Plasminogênio , Proteína Supressora de Tumor p53 , Animais , Humanos , Camundongos , Envelhecimento/genética , Fibrose , Inibidor 1 de Ativador de Plasminogênio/genética , Proteína Supressora de Tumor p53/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA