Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 84(9)2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29453265

RESUMO

The adjustment of metabolic patterns is fundamental to fungal biology and plays vital roles in adaptation to diverse ecological challenges. Nematode-trapping fungi can switch their lifestyle from saprophytic to pathogenic by developing specific trapping devices induced by nematodes to infect their prey as a response to nutrient depletion in nature. However, the chemical identity of the specific fungal metabolites used during the switch remains poorly understood. We hypothesized that these important signal molecules might be volatile in nature. Gas chromatography-mass spectrometry was used to carry out comparative analysis of fungal metabolomics during the saprophytic and pathogenic lifestyles of the model species Arthrobotrys oligospora Two media commonly used in research on this species, cornmeal agar (CMA) and potato dextrose agar (PDA), were chosen for use in this study. The fungus produced a small group of volatile furanone and pyrone metabolites that were associated with the switch from the saprophytic to the pathogenic stage. A. oligospora fungi grown on CMA tended to produce more traps and employ attractive furanones to improve the utilization of traps, while fungi grown on PDA developed fewer traps and used nematode-toxic furanone metabolites to compensate for insufficient traps. Another volatile pyrone metabolite, maltol, was identified as a morphological regulator for enhancing trap formation. Deletion of the gene AOL_s00079g496 in A. oligospora led to increased amounts of the furanone attractant (2-fold) in mutants and enhanced the attractive activity (1.5-fold) of the fungus, while it resulted in decreased trap formation. This investigation provides new insights regarding the comprehensive tactics of fungal adaptation to environmental stress, integrating both morphological and metabolomic mechanisms.IMPORTANCE Nematode-trapping fungi are a unique group of soil-living fungi that can switch from the saprophytic to the pathogenic lifestyle once they come into contact with nematodes as a response to nutrient depletion. In this study, we investigated the metabolic response during the switch and the key types of metabolites involved in the interaction between fungi and nematodes. Our findings indicate that A. oligospora develops multiple and flexible metabolic tactics corresponding to different morphological responses to nematodes. A. oligospora can use similar volatile furanone and pyrone metabolites with different ecological functions to help capture nematodes in the fungal switch from the saprophytic to the pathogenic lifestyle. Furthermore, studies with A. oligospora mutants with increased furanone and pyrone metabolites confirmed the results. This investigation reveals the importance of volatile signaling in the comprehensive tactics used by nematode-trapping fungi, integrating both morphological and metabolomic mechanisms.


Assuntos
Ascomicetos/fisiologia , Cadeia Alimentar , Metaboloma , Transdução de Sinais , Compostos Orgânicos Voláteis/metabolismo , Animais , Dracunculus , Cromatografia Gasosa-Espectrometria de Massas , Metabolômica , Morfogênese
2.
J Nat Prod ; 74(6): 1526-30, 2011 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-21568306

RESUMO

Arthrobotrys oligospora is a carnivorous fungus that can use mycelia trapping devices to capture their prey. Three novel oligosporons, named arthrobotrisins A-C (1-3), were isolated from A. oligospora and identified by spectroscopic analysis in combination with X-ray diffraction. This is the first time that the relative configuration of naturally occurring oligosporon metabolites has been fully determined. Compound 3 exhibited specific antibacterial activities.


Assuntos
Antibacterianos/isolamento & purificação , Antinematódeos/isolamento & purificação , Compostos de Epóxi/isolamento & purificação , Fungos Mitospóricos/química , Nematoides/efeitos dos fármacos , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Antinematódeos/química , Antinematódeos/farmacologia , Cristalografia por Raios X , Compostos de Epóxi/química , Compostos de Epóxi/farmacologia , Conformação Molecular , Estrutura Molecular
3.
J Agric Food Chem ; 58(2): 828-34, 2010 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-20000774

RESUMO

Chemical investigation of one fungal strain P. chlamydosporia YMF 1.00613 isolated from root knots of tobacco infected by Meloidogyne incognita led to the isolation and identification of four aurovertin-type metabolites, which include a new compound, aurovertin I (A1), and three known metabolites, aurovertins E, F and D (A2-A4). Their structures were established by spectroscopic studies such as 1D- and 2D-NMR and MS analysis. Aurovertin I (A1) is the first natural product with an aurovertin skeleton with one less carbon. Compounds A3 and A4 showed the toxicity to the worms of the free-living nematode Panagrellus redivevus with the LC(50) values 88.6 and 41.7 microg/mL at 48 h, respectively. All four aurovertins did not show obvious inhibitory effects on egg hatch of root knot nematode Meloidogyne incognita. The results suggested that the aurovertin-type metabolites produced by P. chlamydosporia might be one of the pathogenic factors involved in the suppression of nematodes.


Assuntos
Antinematódeos/toxicidade , Aurovertinas/toxicidade , Hypocreales/metabolismo , Tylenchoidea/microbiologia , Animais , Antinematódeos/química , Antinematódeos/metabolismo , Aurovertinas/química , Aurovertinas/metabolismo , Hypocreales/química , Nematoides/efeitos dos fármacos , Nematoides/fisiologia , Doenças das Plantas/parasitologia , Nicotiana/parasitologia , Tylenchoidea/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA