RESUMO
Crude oil is a serious soil pollutant, requiring large-scale remediation efforts. Bacterial consortia in combination with rhamnolipids can be an effective bioremediation method. However, the underlying mechanisms and associated changes in soil bacterial composition remain uncharacterized. Therefore, this study sought to evaluate the effectiveness of rhamnolipids in petroleum hydrocarbon removal, and the associated bacterial community dynamics during bioremediation of petroleum-contaminated soils. Contaminated soils were subjected to natural attenuation, bioremediation with rhamnolipids, bioremediation with bacterial consortia, or bioremediation with bacterial consortia supplemented with rhamnolipids (BMR). High-throughput sequencing of bacterial sample partial 16S rRNA sequences was performed. Additionally, the n-alkanes and aromatic fractions were analyzed by gas chromatography-mass spectroscopy. The results showed that rhamnolipid supplementation increased the rate and extent of total petroleum hydrocarbon biodegradation to a maximum of 81% within 35 days. Further, phylogenetic analysis revealed that the bacterial community was composed of 14 phylotypes (similarity level = 97%). Actinobacteria and Proteobacteria were the two core phyla in all samples, accounting for 63-89%, but Proteobacteria was the most dominant phylum in the BMR sample (~ 53%). Among the top 20 genera, Pseudomonas, Pseudoxanthomonas, Cavicella, Mycobacterium, Rhizobium, and Acinetobacter were more abundant in BMR samples compared to other samples. Predicted functional profiles revealed that rhamnolipid addition also induced changes in gene abundance related to hydrocarbon metabolic pathways. This study provided comprehensive insights into the synergistic effect of rhamnolipids and bacterial consortia for altering bacterial populations and specific functional traits, which may serve to improve bacteria-mediated petroleum hydrocarbon biodegradation in contaminated soils.
Assuntos
Glicolipídeos/farmacologia , Consórcios Microbianos/efeitos dos fármacos , Petróleo/metabolismo , Poluentes do Solo/metabolismo , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Bactérias/metabolismo , Biodegradação Ambiental , Hidrocarbonetos/metabolismo , Redes e Vias Metabólicas/efeitos dos fármacos , Redes e Vias Metabólicas/genética , Consórcios Microbianos/genética , Filogenia , RNA Ribossômico 16S/genética , Microbiologia do SoloRESUMO
Magnetic melamine-formaldehyde resin was prepared via water-in-oil emulsification approach by entrapping Fe3O4 magnetic nanoparticles as the core. The preparation of the magnetic resin was optimized by investigating the amount of polyethylene glycol 20000 and Fe3O4 nanoparticles, the concentration of the catalyst (hydrochloric acid), as well as the mechanical stirring rate. The prepared material was characteristic of excellent anion-exchange capacity, good water wettability, and proper magnetism. Its application was demonstrated by magnetic solid-phase extraction of nonsteroidal anti-inflammatory drugs coupled to high performance liquid chromatography-UV analysis. Under the optimal conditions, the proposed method showed broad linear range of 1-5000 ng mL-1 of milk and urine samples, satisfactory reproducibility with intra-day and inter-day relative standard deviations less than 12.4% and 9.7%, respectively, and low limits of detection of 0.2 ng mL-1 for the studied nonsteroidal anti-inflammatory drugs. The developed method was successfully used for the determination of the nonsteroidal anti-inflammatory drugs in spiked urine and milk samples. The magnetic melamine-formaldehyde resin was promising for the sample pretreatment of acidic analytes via anion-exchange interaction with convenient operation from complex sample matrix. Graphical abstract Magnetic solid-phase extraction based on melamine-formaldehyde resin.
Assuntos
Anti-Inflamatórios não Esteroides/isolamento & purificação , Anti-Inflamatórios não Esteroides/urina , Formaldeído/química , Imãs/química , Leite/química , Extração em Fase Sólida/métodos , Triazinas/química , Animais , Anti-Inflamatórios não Esteroides/análise , Cromatografia Líquida de Alta Pressão/métodos , Humanos , Limite de Detecção , Magnetismo/métodos , Modelos Moleculares , Reprodutibilidade dos Testes , Resinas Sintéticas/químicaRESUMO
Biocompatible magnetic nanoparticles that featured divinylbenzene and sulfonate functionalities were used for the magnetic solid-phase extraction of five angiotensin II receptor antagonists from human urine and plasma samples based on a reversed-phase and cation-exchange mixed-mode mechanism. Under the optimized extraction conditions, coupled to high-performance liquid chromatography with fluorescence detection, this proposed method was found to be accurate and precise with relative standard deviations of less than 11.7%, and a good recovery of 80.1-119.5% for both samples. The linear ranges were 0.2-2000 and 0.2-2500 ng/mL along with correlation coefficients above 0.9923 and 0.9928 for urine and plasma samples, respectively. Limits of detection were 0.01-5.74 and 0.01-1.31 ng/mL, respectively. The proposed magnetic solid-phase extraction based on the magnetic nanoparticles functionalized with divinylbenzene and sulfonate was a reliable and convenient sample pretreatment method and had the potential for isolating and enriching the angiotensin II receptor antagonists in biological samples.
Assuntos
Bloqueadores do Receptor Tipo 2 de Angiotensina II/sangue , Bloqueadores do Receptor Tipo 2 de Angiotensina II/urina , Extração em Fase Sólida , Cátions , Cromatografia Líquida de Alta Pressão , HumanosRESUMO
BACKGROUND: In recent years, the development of adjunctive therapeutic hyperthermia for cancer therapy has received considerable attention. However, the mechanisms underlying hyperthermia resistance are still poorly understood. In this study, we investigated the roles of coldinducible RNA binding protein (Cirbp) in regulating hyperthermia resistance and underlying mechanisms in nasopharyngeal carcinoma (NPC). METHODS: CCK-8 assay, colony formation assay, tumor sphere formation assay, qRT-PCR, Western blot were employed to examine the effects of hyperthermia (HT), HT + oridonin(Ori) or HT + radiotherapy (RT) on the proliferation and stemness of NPC cells. RNA sequencing was applied to gain differentially expressed genes upon hyperthermia. Gain-of-function and loss-of-function experiments were used to evaluate the effects of RNAi-mediated Cirbp silencing or Cirbp overexpression on the sensitivity or resistance of NPC cells and cancer stem-like cells to hyperthermia by CCK-8 assay, colony formation assay, tumorsphere formation assay and apoptosis assay, and in subcutaneous xenograft animal model. miRNA transient transfection and luciferase reporter assay were used to demonstrate that Cirbp is a direct target of miR-377-3p. The phosphorylation levels of key members in ATM-Chk2 and ATR-Chk1 pathways were detected by Western blot. RESULTS: Our results firstly revealed that hyperthermia significantly attenuated the stemness of NPC cells, while combination treatment of hyperthermia and oridonin dramatically increased the killing effect on NPC cells and cancer stem cell (CSC)like population. Moreover, hyperthermia substantially improved the sensitivity of radiationresistant NPC cells and CSClike cells to radiotherapy. Hyperthermia noticeably suppressed Cirbp expression in NPC cells and xenograft tumor tissues. Furthermore, Cirbp inhibition remarkably boosted antitumorkilling activity of hyperthermia against NPC cells and CSClike cells, whereas ectopic expression of Cirbp compromised tumorkilling effect of hyperthermia on these cells, indicating that Cirbp overexpression induces hyperthermia resistance. ThermomiR-377-3p improved the sensitivity of NPC cells and CSClike cells to hyperthermia in vitro by directly suppressing Cirbp expression. More importantly, our results displayed the significantly boosted sensitization of tumor xenografts to hyperthermia by Cirbp silencing in vivo, but ectopic expression of Cirbp almost completely counteracted hyperthermia-mediated tumor cell-killing effect against tumor xenografts in vivo. Mechanistically, Cirbp silencing-induced inhibition of DNA damage repair by inactivating ATM-Chk2 and ATR-Chk1 pathways, decrease in stemness and increase in cell death contributed to hyperthermic sensitization; conversely, Cirbp overexpression-induced promotion of DNA damage repair, increase in stemness and decrease in cell apoptosis contributed to hyperthermia resistance. CONCLUSION: Taken together, these findings reveal a previously unrecognized role for Cirbp in positively regulating hyperthermia resistance and suggest that thermomiR-377-3p and its target gene Cirbp represent promising targets for therapeutic hyperthermia.
Assuntos
Diterpenos do Tipo Caurano , Hipertermia Induzida , MicroRNAs , Neoplasias Nasofaríngeas , Animais , Humanos , Neoplasias Nasofaríngeas/patologia , Sincalida/metabolismo , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/terapia , Carcinoma Nasofaríngeo/patologia , MicroRNAs/genética , Células-Tronco Neoplásicas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão GênicaRESUMO
Pseudomonas aeruginosa DN1 can efficiently utilize fluoranthene as its sole carbon source, and the initial reaction in the biodegradation process is catalyzed by a ring-hydroxylating dioxygenase (RHD). To clarify the binding interaction of RHD with fluoranthene in the strain DN1, the genes encoding alpha subunit (RS30940) and beta subunit (RS05115) of RHD were functionally characterized through multi-technique combination such as gene knockout and homology modeling as well as molecular docking analysis. The results showed that the mutants lacking the characteristic alpha subunit and/or beta subunit failed to degrade fluoranthene effectively. Based on the translated protein sequence and Ramachandran plot, 96.5% of the primary amino-acid sequences of the alpha subunit in the modeled structure of the RHD were in the permitted region, 2.3% in the allowed region, but 1.2% in the disallowed area. The catalytic mechanism mediated by key residues was proposed by the simulations of molecular docking, wherein the active site of alpha subunit constituted a triangle structure of the mononuclear iron atom and the two oxygen atoms coupled with the predicted catalytic ternary of His217-His222-Asp372 for the dihydroxylation reaction with fluoranthene. Those amino acid residues adjacent to fluoranthene were nonpolar groups, and the C7-C8 positions on the fluoranthene ring were estimated to be the best oxidation sites. The distance of C7-O and C8-O was 3.77 Å and 3.04 Å respectively, and both of them were parallel. The results of synchronous fluorescence and site-directed mutagenesis confirmed the roles of the predicted residues during catalysis. This binding interaction could enhance our understanding of the catalytic mechanism of RHDs and provide a solid foundation for further enzymatic modification.
Assuntos
Dioxigenases/metabolismo , Fluorenos/metabolismo , Pseudomonas aeruginosa/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/química , Dioxigenases/genética , Fluorenos/química , Técnicas de Inativação de Genes , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismoRESUMO
Magnetic nanoparticles (MNPs) featured with divinylbenzene (DVB) and sulfonate functionalities (Fe3O4-DVB-SO3(-)) were prepared via "thiol-ene" click chemistry. The hydrophobic DVB moieties were dedicated for extraction while the hydrophilic sulfonate groups were designed for dispersing the MNPs in aqueous sample solution. Thus, the specially designed material could ensure operational convenience and improve reproducibility during extraction. The application of the material was demonstrated by the extraction of polycyclic aromatic hydrocarbons (PAHs) from environmental water samples followed by gas chromatography-mass spectrometric analysis. The main factors influencing the extraction, including the type of the desorption solvent, the agitation mode, the amount of MNPs, extraction and desorption time and salt addition in sample solution, were investigated in detail. Under the optimized conditions, the proposed method showed satisfactory reproducibility with intra-day and inter-day relative standard deviations less than 16.5% and 21.2%, and low limits of detection of 1.1pgmL(-1), 0.8pgmL(-1), 1.1pgmL(-1), 1.4pgmL(-1), 0.6pgmL(-1), 2.1pgmL(-1) and 0.7pgmL(-1) for naphthalene, acenaphthene, fluorine, phenanthrene, anthracene, fluoranthene and pyrene, respectively. The developed method was also successfully used for determination of the PAHs in genuine lake and river environmental water samples by standard addition method. All the studied PAHs were detected in these waters with comparable results by the standard liquid-liquid extraction method. The developed MNPs with dual property of hydrophobicity and hydrophilicity were suitable for the treatment of water samples. The magnetic solid phase extraction based on this material was reliable and convenient. It has great potential in the preconcentration of trace analytes in complex matrix.