Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioorg Chem ; 95: 103524, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31918396

RESUMO

Carbazole based novel multifunctional agents has been rationally designed and synthesized as potential anti-Alzheimer agents. Multi-functional activity of these derivatives have been assessed by performing various in-vitro assays and these compounds appeared to be potent AChE inhibitors, Aß aggregation inhibitors, anti-oxidant and neuroprotective agents. Among the entire series, MT-1 and MT-6 were most potent multifunctional agents which displayed effective and selective AChE inhibition, Aß disaggregation, anti-oxidant and metal chelation action. Neuroprotective activity of MT-6 has been examined against H2O2 induced toxicity in SHSY-5Y cells and they have shown effective neuroprotection. Additionally, MT-6 did not display any significant toxicity in SHSY-5Y cells, indicating its non-toxic nature. Molecular docking and MD simulation studies have been also performed to explore molecular level interaction with AChE and Aß. Finally, MT-6 was evaluated against scopolamine induced dementia model of mice and this compound actively improved memory deficit and cognition impairment in scopolamine treated mice. Thus, novel carbazole derivative MT-6 has been explored as an effective and safe multifunctional agent against AD and this molecule may be used as a suitable lead for development of effective anti-Alzheimer agents in future.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Carbazóis/uso terapêutico , Desenho de Fármacos , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Linhagem Celular , Simulação por Computador , Humanos , Peróxido de Hidrogênio/farmacologia , Técnicas In Vitro , Microscopia Eletrônica de Transmissão , Simulação de Acoplamento Molecular , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/metabolismo
2.
Biomed Pharmacother ; 174: 116484, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38565058

RESUMO

A novel small molecule based on benzothiazole-piperazine has been identified as an effective multi-target-directed ligand (MTDL) against Alzheimer's disease (AD). Employing a medicinal chemistry approach, combined with molecular docking, MD simulation, and binding free energy estimation, compound 1 emerged as a potent MTDL against AD. Notably, compound 1 demonstrated efficient binding to both AChE and Aß1-42, involving crucial molecular interactions within their active sites. It displayed a binding free energy (ΔGbind) -18.64± 0.16 and -16.10 ± 0.18 kcal/mol against AChE and Aß1-42, respectively. In-silico findings were substantiated through rigorous in vitro and in vivo studies. In vitro analysis confirmed compound 1 (IC50=0.42 µM) as an effective, mixed-type, and selective AChE inhibitor, binding at both the enzyme's catalytic and peripheral anionic sites. Furthermore, compound 1 demonstrated a remarkable ability to reduce the aggregation propensity of Aß, as evidenced by Confocal laser scanning microscopy and TEM studies. Remarkably, in vivo studies exhibited the promising therapeutic potential of compound 1. In a scopolamine-induced memory deficit mouse model of AD, compound 1 showed significantly improved spatial memory and cognition. These findings collectively underscore the potential of compound 1 as a promising therapeutic candidate for the treatment of AD.


Assuntos
Acetilcolinesterase , Doença de Alzheimer , Peptídeos beta-Amiloides , Benzotiazóis , Inibidores da Colinesterase , Simulação de Acoplamento Molecular , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Animais , Benzotiazóis/farmacologia , Benzotiazóis/química , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Peptídeos beta-Amiloides/metabolismo , Acetilcolinesterase/metabolismo , Camundongos , Masculino , Humanos , Piperazinas/farmacologia , Piperazinas/química , Escopolamina , Piperazina/farmacologia , Piperazina/química , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/farmacologia , Simulação de Dinâmica Molecular , Simulação por Computador , Modelos Animais de Doenças , Aprendizagem em Labirinto/efeitos dos fármacos
3.
RSC Adv ; 10(30): 17602-17619, 2020 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35515597

RESUMO

A novel series of benzothiazole-piperazine hybrids were rationally designed, synthesized, and evaluated as multifunctional ligands against Alzheimer's disease (AD). The synthesized hybrid molecules illustrated modest to strong inhibition of acetylcholinesterase (AChE) and Aß1-42 aggregation. Compound 12 emerged as the most potent hybrid molecule exhibiting balanced functions with effective, uncompetitive and selective inhibition against AChE (IC50 = 2.31 µM), good copper chelation, Aß1-42 aggregation inhibition (53.30%) and disaggregation activities. Confocal laser scanning microscopy and TEM analysis also validate the Aß fibril inhibition ability of this compound. Furthermore, this compound has also shown low toxicity and is capable of impeding loss of cell viability elicited by H2O2 neurotoxicity in SHSY-5Y cells. Notably, compound 12 significantly improved cognition and spatial memory against scopolamine-induced memory deficit in a mouse model. Hence, our results corroborate the multifunctional nature of novel hybrid molecule 12 against AD and it may be a suitable lead for further development as an effective therapeutic agent for therapy in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA