Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO Rep ; 25(2): 593-615, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38228788

RESUMO

Many physiological osteocalcin-regulated functions are affected in adult offspring of mothers experiencing unhealthy pregnancy. Furthermore, osteocalcin signaling during gestation influences cognition and adrenal steroidogenesis in adult mice. Together these observations suggest that osteocalcin may broadly function during pregnancy to determine organismal homeostasis in adult mammals. To test this hypothesis, we analyzed in unchallenged wildtype and Osteocalcin-deficient, newborn and adult mice of various genotypes and origin maintained on different genetic backgrounds, the functions of osteocalcin in the pancreas, liver and testes and their molecular underpinnings. This analysis revealed that providing mothers are Osteocalcin-deficient, Osteocalcin haploinsufficiency in embryos hampers insulin secretion, liver gluconeogenesis, glucose homeostasis, testes steroidogenesis in adult offspring; inhibits cell proliferation in developing pancreatic islets and testes; and disrupts distinct programs of gene expression in these organs and in the brain. This study indicates that osteocalcin exerts dominant functions in most organs it influences. Furthermore, through their synergistic regulation of multiple physiological functions, osteocalcin of maternal and embryonic origins contributes to the establishment and maintenance of organismal homeostasis in newborn and adult offspring.


Assuntos
Glicemia , Efeitos Tardios da Exposição Pré-Natal , Animais , Feminino , Humanos , Camundongos , Gravidez , Glicemia/análise , Glicemia/metabolismo , Homeostase , Insulina/metabolismo , Secreção de Insulina , Mamíferos/metabolismo , Osteocalcina/genética , Osteocalcina/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo
2.
Nature ; 568(7753): 541-545, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30971820

RESUMO

Osteoclasts are multinucleated giant cells that resorb bone, ensuring development and continuous remodelling of the skeleton and the bone marrow haematopoietic niche. Defective osteoclast activity leads to osteopetrosis and bone marrow failure1-9, whereas excess activity can contribute to bone loss and osteoporosis10. Osteopetrosis can be partially treated by bone marrow transplantation in humans and mice11-18, consistent with a haematopoietic origin of osteoclasts13,16,19 and studies that suggest that they develop by fusion of monocytic precursors derived from haematopoietic stem cells in the presence of CSF1 and RANK ligand1,20. However, the developmental origin and lifespan of osteoclasts, and the mechanisms that ensure maintenance of osteoclast function throughout life in vivo remain largely unexplored. Here we report that osteoclasts that colonize fetal ossification centres originate from embryonic erythro-myeloid progenitors21,22. These erythro-myeloid progenitor-derived osteoclasts are required for normal bone development and tooth eruption. Yet, timely transfusion of haematopoietic-stem-cell-derived monocytic cells in newborn mice is sufficient to rescue bone development in early-onset autosomal recessive osteopetrosis. We also found that the postnatal maintenance of osteoclasts, bone mass and the bone marrow cavity involve iterative fusion of circulating blood monocytic cells with long-lived osteoclast syncytia. As a consequence, parabiosis or transfusion of monocytic cells results in long-term gene transfer in osteoclasts in the absence of haematopoietic-stem-cell chimerism, and can rescue an adult-onset osteopetrotic phenotype caused by cathepsin K deficiency23,24. In sum, our results identify the developmental origin of osteoclasts and a mechanism that controls their maintenance in bones after birth. These data suggest strategies to rescue osteoclast deficiency in osteopetrosis and to modulate osteoclast activity in vivo.


Assuntos
Células-Tronco Hematopoéticas/citologia , Osteoclastos/citologia , Osteoclastos/metabolismo , Osteopetrose/genética , Animais , Animais Recém-Nascidos , Desenvolvimento Ósseo , Feminino , Genes Recessivos , Masculino , Camundongos , Osteopetrose/patologia , Erupção Dentária
3.
Cell ; 138(5): 976-89, 2009 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-19737523

RESUMO

Leptin inhibition of bone mass accrual requires the integrity of specific hypothalamic neurons but not expression of its receptor on these neurons. The same is true for its regulation of appetite and energy expenditure. This suggests that leptin acts elsewhere in the brain to achieve these three functions. We show here that brainstem-derived serotonin (BDS) favors bone mass accrual following its binding to Htr2c receptors on ventromedial hypothalamic neurons and appetite via Htr1a and 2b receptors on arcuate neurons. Leptin inhibits these functions and increases energy expenditure because it reduces serotonin synthesis and firing of serotonergic neurons. Accordingly, while abrogating BDS synthesis corrects the bone, appetite and energy expenditure phenotypes caused by leptin deficiency, inactivation of the leptin receptor in serotonergic neurons recapitulates them fully. This study modifies the map of leptin signaling in the brain and identifies a molecular basis for the common regulation of bone and energy metabolisms. For a video summary of this article, see the PaperFlick file with the Supplemental Data available online.


Assuntos
Apetite , Densidade Óssea , Metabolismo Energético , Leptina/metabolismo , Serotonina/metabolismo , Tronco Encefálico/metabolismo , Hipotálamo/metabolismo , Receptores para Leptina/metabolismo , Transdução de Sinais
4.
Cell ; 135(5): 825-37, 2008 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-19041748

RESUMO

Loss- and gain-of-function mutations in the broadly expressed gene Lrp5 affect bone formation, causing osteoporosis and high bone mass, respectively. Although Lrp5 is viewed as a Wnt coreceptor, osteoblast-specific disruption of beta-Catenin does not affect bone formation. Instead, we show here that Lrp5 inhibits expression of Tph1, the rate-limiting biosynthetic enzyme for serotonin in enterochromaffin cells of the duodenum. Accordingly, decreasing serotonin blood levels normalizes bone formation and bone mass in Lrp5-deficient mice, and gut- but not osteoblast-specific Lrp5 inactivation decreases bone formation in a beta-Catenin-independent manner. Moreover, gut-specific activation of Lrp5, or inactivation of Tph1, increases bone mass and prevents ovariectomy-induced bone loss. Serotonin acts on osteoblasts through the Htr1b receptor and CREB to inhibit their proliferation. By identifying duodenum-derived serotonin as a hormone inhibiting bone formation in an Lrp5-dependent manner, this study broadens our understanding of bone remodeling and suggests potential therapies to increase bone mass.


Assuntos
Duodeno/metabolismo , Proteínas Relacionadas a Receptor de LDL/metabolismo , Osteogênese , Serotonina/metabolismo , Animais , Proteína de Ligação a CREB/metabolismo , Feminino , Proteínas Relacionadas a Receptor de LDL/genética , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Camundongos , Receptor 5-HT1B de Serotonina/metabolismo , Triptofano Hidroxilase/metabolismo
5.
Am J Physiol Regul Integr Comp Physiol ; 320(6): R984-R993, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33759575

RESUMO

Vitamin B12 deficiency has been shown to affect bone mass in rodents and negatively impact bone formation in humans. In this study using mouse models, we define the effect of B12 supplementation in the wild-type mother and B12 deficiency in a mouse genetic model (Gif-/- mice) during gestation on bone and muscle architecture and mechanical properties in the offspring. Analysis of bones from 4-wk-old offspring of the wild-type mother following vehicle or B12 supplementation during gestation (from embryonic day 0.5 to 20.5) showed an increase in bone mass caused by an isolated increase in bone formation in the B12-supplemented group compared with vehicle controls. Analysis of the effect of B12 deficiency in the mother in a mouse genetic model (Gif-/- mice) on the long bone architecture of the offspring showed a compromised cortical and trabecular bone mass, which was completely prevented by a single injection of B12 in the B12-deficient Gif-/- mothers. Biomechanical analysis of long bones of the offspring born from B12-supplemented wild-type mothers showed an increase in bone strength, and conversely, offspring born from B12-deficient Gif-/- mothers revealed a compromised bone strength, which could be rescued by a single injection of B12 in the B12-deficient Gif-/- mother. Muscle structure and function analysis however revealed no significant effect on muscle mass, structure, and grip strength of B12 deficiency or supplementation in Gif-/- mice compared with littermate controls. Together, these results demonstrate the beneficial effect of maternally derived B12 in the regulation of bone structure and function in the offspring.


Assuntos
Osso e Ossos/metabolismo , Fenômenos Fisiológicos da Nutrição Materna/fisiologia , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Vitamina B 12/metabolismo , Animais , Densidade Óssea/fisiologia , Suplementos Nutricionais , Feminino , Camundongos , Gravidez , Vitaminas/metabolismo , Desmame
6.
Genes Dev ; 24(20): 2330-42, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20952540

RESUMO

Serotonin is a bioamine regulating bone mass accrual differently depending on its site of synthesis. It decreases accrual when synthesized in the gut, and increases it when synthesized in the brain. The signal transduction events elicited by gut-derived serotonin once it binds to the Htr1b receptor present on osteoblasts have been identified and culminate in cAMP response element-binding protein (CREB) regulation of osteoblast proliferation. In contrast, we do not know how brain-derived serotonin favors bone mass accrual following its binding to the Htr2c receptor on neurons of the hypothalamic ventromedial nucleus (VMH). We show here--through gene expression analysis, serotonin treatment of wild-type and Htr2c(-/-) hypothalamic explants, and cell-specific gene deletion in the mouse--that, following its binding to the Htr2c receptor on VMH neurons, serotonin uses a calmodulin kinase (CaMK)-dependent signaling cascade involving CaMKKß and CaMKIV to decrease the sympathetic tone and increase bone mass accrual. We further show that the transcriptional mediator of these events is CREB, whose phosphorylation on Ser 133 is increased by CaMKIV following serotonin treatment of hypothalamic explants. A microarray experiment identified two genes necessary for optimum sympathetic activity whose expression is regulated by CREB. These results provide a molecular understanding of how serotonin signals in hypothalamic neurons to regulate bone mass accrual and identify CREB as a critical determinant of this function, although through different mechanisms depending on the cell type, neuron, or osteoblast in which it is expressed.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Neurônios/metabolismo , Osteoblastos/metabolismo , Serotonina/metabolismo , Animais , Osso e Ossos/citologia , Osso e Ossos/metabolismo , Encéfalo/metabolismo , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Linhagem Celular Tumoral , Análise por Conglomerados , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Feminino , Imunofluorescência , Expressão Gênica/efeitos dos fármacos , Perfilação da Expressão Gênica , Hipotálamo/citologia , Hipotálamo/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Fosforilação/efeitos dos fármacos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Serotonina/farmacologia
7.
J Pineal Res ; 63(2)2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28512916

RESUMO

Tryptophan, an essential amino acid through a series of enzymatic reactions gives rise to various metabolites, viz. serotonin and melatonin, that regulate distinct biological functions. We show here that tryptophan metabolism in the pineal gland favors bone mass accrual through production of melatonin, a pineal-derived neurohormone. Pineal gland-specific deletion of Tph1, the enzyme that catalyzes the first step in the melatonin biosynthesis lead to a decrease in melatonin levels and a low bone mass due to an isolated decrease in bone formation while bone resorption parameters remained unaffected. Skeletal analysis of the mice deficient in MT1 or MT2 melatonin receptors showed a low bone mass in MT2-/- mice while MT1-/- mice had a normal bone mass compared to the WT mice. This low bone mass in the MT2-/- mice was due to an isolated decrease in osteoblast numbers and bone formation. In vitro assays of the osteoblast cultures derived from the MT1-/- and MT2-/- mice showed a cell intrinsic defect in the proliferation, differentiation and mineralization abilities of MT2-/- osteoblasts compared to WT counterparts, and the mutant cells did not respond to melatonin addition. Finally, we demonstrate that daily oral administration of melatonin can increase bone accrual during growth and can cure ovariectomy-induced structural and functional degeneration of bone by specifically increasing bone formation. By identifying pineal-derived melatonin as a regulator of bone mass through MT2 receptors, this study expands the role played by tryptophan derivatives in the regulation of bone mass and underscores its therapeutic relevance in postmenopausal osteoporosis.


Assuntos
Osso e Ossos/metabolismo , Melatonina/farmacologia , Osteoblastos/metabolismo , Glândula Pineal/metabolismo , Receptor MT2 de Melatonina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Osso e Ossos/patologia , Calcificação Fisiológica/efeitos dos fármacos , Feminino , Humanos , Melatonina/metabolismo , Camundongos , Camundongos Knockout , Tamanho do Órgão/efeitos dos fármacos , Osteoblastos/patologia , Osteoporose Pós-Menopausa/tratamento farmacológico , Osteoporose Pós-Menopausa/genética , Osteoporose Pós-Menopausa/metabolismo , Osteoporose Pós-Menopausa/patologia , Glândula Pineal/patologia , Receptor MT1 de Melatonina/genética , Receptor MT1 de Melatonina/metabolismo , Receptor MT2 de Melatonina/genética , Transdução de Sinais/genética
8.
Arch Biochem Biophys ; 561: 130-6, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24950023

RESUMO

Bones are structures that give the shape and defined features to vertebrates, protect several soft organs and perform multiple endocrine influences on other organs. To achieve these functions bones are first modeled early during life and then constantly remodeled throughout life. The process of bone (re)modeling happens simultaneously at multitude of locations in the skeleton and ensures that vertebrates have a mechanically strong yet a flexible skeleton to the most part of their life. Given the extent of its occurrence in the body, bone remodeling is a highly energy demanding process and is co-ordinated with other physiological processes as diverse as energy metabolism, sleep-wake cycle and reproduction. Neuronal circuits in the brain play a very important role in the coordination of bone remodeling with other organ system functions, and perform this function in sync with environmental and peripheral hormonal cues. In this review, we will focus on the roles of hormonal signals and neural circuits that originate in, or impinge on, the brain in the regulation of bone mass. We will provide herein an updated view of how advances in molecular genetics have refined the neural circuits involved in the regulation of bone mass, from the whole brain level to the specific neuronal populations and their neurotransmitters. This will help to understand the mechanisms whereby vertebrate brain regulates bone mass by fine-tuning metabolic signals that originate in the brain or elsewhere in the body.


Assuntos
Remodelação Óssea/fisiologia , Osso e Ossos/fisiologia , Encéfalo/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Hormônios/metabolismo , Neuropeptídeos/metabolismo , Transdução de Sinais/fisiologia , Animais , Humanos , Tamanho do Órgão/fisiologia
9.
Annu Rev Med ; 62: 323-31, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21073335

RESUMO

The molecular elucidation of two human skeletal dysplasias revealed that they are caused by an increase or a decrease in the synthesis of serotonin by enterochromaffin cells of the gut. This observation revealed a novel and powerful endocrine means to regulate bone mass. Exploiting these findings in the pharmacological arena led to the demonstration that inhibiting synthesis of gut-derived serotonin could be an effective means to treat low-bone-mass diseases such as osteoporosis.


Assuntos
Densidade Óssea/efeitos dos fármacos , Duodeno/efeitos dos fármacos , Osteoporose/tratamento farmacológico , Pirimidinas/uso terapêutico , Antagonistas da Serotonina/uso terapêutico , Serotonina/metabolismo , Triptofano Hidroxilase/antagonistas & inibidores , Animais , Ensaios Clínicos como Assunto , Duodeno/metabolismo , Feminino , Humanos , Proteínas Relacionadas a Receptor de LDL/genética , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Camundongos , Osteogênese Imperfeita/genética , Osteoporose/genética , Ratos , Serotonina/sangue
10.
Lancet ; 380(9844): 815-23, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22763110

RESUMO

BACKGROUND: Osteoarthritis is the most common form of arthritis worldwide and is a major cause of pain and disability in elderly people. The health economic burden of osteoarthritis is increasing commensurate with obesity prevalence and longevity. Osteoarthritis has a strong genetic component but the success of previous genetic studies has been restricted due to insufficient sample sizes and phenotype heterogeneity. METHODS: We undertook a large genome-wide association study (GWAS) in 7410 unrelated and retrospectively and prospectively selected patients with severe osteoarthritis in the arcOGEN study, 80% of whom had undergone total joint replacement, and 11,009 unrelated controls from the UK. We replicated the most promising signals in an independent set of up to 7473 cases and 42,938 controls, from studies in Iceland, Estonia, the Netherlands, and the UK. All patients and controls were of European descent. FINDINGS: We identified five genome-wide significant loci (binomial test p≤5·0×10(-8)) for association with osteoarthritis and three loci just below this threshold. The strongest association was on chromosome 3 with rs6976 (odds ratio 1·12 [95% CI 1·08-1·16]; p=7·24×10(-11)), which is in perfect linkage disequilibrium with rs11177. This SNP encodes a missense polymorphism within the nucleostemin-encoding gene GNL3. Levels of nucleostemin were raised in chondrocytes from patients with osteoarthritis in functional studies. Other significant loci were on chromosome 9 close to ASTN2, chromosome 6 between FILIP1 and SENP6, chromosome 12 close to KLHDC5 and PTHLH, and in another region of chromosome 12 close to CHST11. One of the signals close to genome-wide significance was within the FTO gene, which is involved in regulation of bodyweight-a strong risk factor for osteoarthritis. All risk variants were common in frequency and exerted small effects. INTERPRETATION: Our findings provide insight into the genetics of arthritis and identify new pathways that might be amenable to future therapeutic intervention. FUNDING: arcOGEN was funded by a special purpose grant from Arthritis Research UK.


Assuntos
Osteoartrite/genética , Artroplastia de Substituição , Estudos de Casos e Controles , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Desequilíbrio de Ligação , Masculino , Osteoartrite/cirurgia , Osteoartrite do Quadril/genética , Osteoartrite do Quadril/cirurgia , Osteoartrite do Joelho/genética , Osteoartrite do Joelho/cirurgia , Polimorfismo de Nucleotídeo Único
11.
J Alzheimers Dis ; 95(3): 995-1011, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37638446

RESUMO

BACKGROUND: Cognitive decline is a common consequence of COVID-19, and studies suggest a link between COVID-19 and Alzheimer's disease (AD). However, the molecular mechanisms underlying this association remain unclear. OBJECTIVE: To understand the potential molecular mechanisms underlying the association between COVID-19 and AD development, and identify the potential genetic targets for pharmaceutical approaches to reduce the risk or delay the development of COVID-19-related neurological pathologies. METHODS: We analyzed transcriptome datasets of 638 brain samples using a novel Robust Rank Aggregation method, followed by functional enrichment, protein-protein, hub genes, gene-miRNA, and gene-transcription factor (TF) interaction analyses to identify molecular markers altered in AD and COVID-19 infected brains. RESULTS: Our analyses of frontal cortex from COVID-19 and AD patients identified commonly altered genes, miRNAs and TFs. Functional enrichment and hub gene analysis of these molecular changes revealed commonly altered pathways, including downregulation of the cyclic adenosine monophosphate (cAMP) signaling and taurine and hypotaurine metabolism, alongside upregulation of neuroinflammatory pathways. Furthermore, gene-miRNA and gene-TF network analyses provided potential up- and downstream regulators of identified pathways. CONCLUSION: We found that downregulation of cAMP signaling pathway, taurine metabolisms, and upregulation of neuroinflammatory related pathways are commonly altered in AD and COVID-19 pathogenesis, and may make COVID-19 patients more susceptible to cognitive decline and AD. We also identified genetic targets, regulating these pathways that can be targeted pharmaceutically to reduce the risk or delay the development of COVID-19-related neurological pathologies and AD.


Assuntos
Doença de Alzheimer , COVID-19 , MicroRNAs , Humanos , Doença de Alzheimer/patologia , Perfilação da Expressão Gênica , COVID-19/genética , MicroRNAs/genética , Fatores de Transcrição/genética , Desenvolvimento de Medicamentos , Taurina
12.
bioRxiv ; 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37398415

RESUMO

Cognitive decline has been reported as a common consequence of COVID-19, and studies have suggested a link between COVID-19 infection and Alzheimer's disease (AD). However, the molecular mechanisms underlying this association remain unclear. To shed light on this link, we conducted an integrated genomic analysis using a novel Robust Rank Aggregation method to identify common transcriptional signatures of the frontal cortex, a critical area for cognitive function, between individuals with AD and COVID-19. We then performed various analyses, including the KEGG pathway, GO ontology, protein-protein interaction, hub gene, gene-miRNA, and gene-transcription factor interaction analyses to identify molecular components of biological pathways that are associated with AD in the brain also show similar changes in severe COVID-19. Our findings revealed the molecular mechanisms underpinning the association between COVID-19 infection and AD development and identified several genes, miRNAs, and TFs that may be targeted for therapeutic purposes. However, further research is needed to investigate the diagnostic and therapeutic applications of these findings.

13.
bioRxiv ; 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37645714

RESUMO

Many physiological functions regulated by osteocalcin are affected in adult offspring of mothers experiencing an unhealthy pregnancy. Furthermore, osteocalcin signaling during gestation influences cognition and adrenal steroidogenesis in adult mice. Together these observations suggest that osteocalcin functions during pregnancy may be a broader determinant of organismal homeostasis in adult mammals than previously thought. To test this hypothesis, we analyzed in unchallenged wildtype and Osteocalcin -deficient, newborn, and adult mice of various genotypes and origin, and that were maintained on different genetic backgrounds, the functions of osteocalcin in the pancreas, liver and testes and their molecular underpinnings. This analysis revealed that providing mothers are themselves Osteocalcin -deficient, Osteocalcin haploinsufficiency in embryos hampers insulin secretion, liver gluconeogenesis, glucose homeostasis, testes steroidogenesis in adult offspring; inhibits cell proliferation in developing pancreatic islets and testes; and disrupts distinct programs of gene expression in these organs and in the brain. This study indicates that through their synergistic regulation of multiple physiological functions, osteocalcin ofmaternal and embryonic origins contributes to the establishment and maintenance of organismal homeostasis in newborn and adult offspring.

14.
J Family Med Prim Care ; 11(8): 4705-4710, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36352979

RESUMO

Background: Smoking and chewing tobacco carry significant risks for the development of oral cancer and premalignant lesions. The present study was conducted to find the prevalence of tobacco-related habits in Hazaribagh population and its association with oral mucosal lesion. Methodology: The present study was carried out on patients who visited the Department of Oral Medicine And Radiology, Hazaribagh College of Dental Sciences And Hospital. A total of 5,000 subjects were screened for tobacco-related habits and associated mucosal changes. Detailed clinical history about tobacco-related habits was obtained. Oral mucosal lesions were screened using the WHO format for diagnosis of oral lesions. The findings were tabulated and analyzed statistically. Results: Of the 5,000 subjects enrolled for the study, 1,085 (21.7%) used tobacco in some forms. Habit of smoking tobacco was present among 273 (25.2%) and using smokeless tobacco among 811 (74.7%) individuals. Tobacco pouch keratosis (46.1%) was found to be most common lesion, followed by oral submucous fibrosis (OSMF) (16.1%), lichenoid reaction (14.1%), smokers palate/melanosis (12.2%), leukoplakia (7.2%), erythroplakia (2.3%), and oral cancer in (2%). Conclusion: The results provide insight into prevalent tobacco habits and associated oral mucosal lesions in Hazaribagh population. These may act as baseline data for the formulation of preventive programs and help future studies explore the prevalence of tobacco-associated lesions in vulnerable populations. Current knowledge, including findings from the present study, about the prevalence of tobacco use and various oral lesions associated with it may help primary health care physicians to promote among patients visiting them the awareness about the adverse effects of tobacco consumption and treatment options available for tobacco-related lesions at the early stage.

15.
Int J Mach Learn Cybern ; 13(12): 4013-4032, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36164557

RESUMO

The classical automata, fuzzy finite automata, and rough finite state automata are some formal models of computing used to perform the task of computation and are considered to be the input device. These computational models are valid only for fixed input alphabets for which they are defined and, therefore, are less user-friendly and have limited applications. The semantic computing techniques provide a way to redefine them to improve their scope and applicability. In this paper, the concept of semantically equivalent concepts and semantically related concepts in information about real-world applications datasets are used to introduce and study two new formal models of computations with semantic computing (SC), namely, a rough finite-state automaton for SC and a fuzzy finite rough automaton for SC as extensions of rough finite-state automaton and fuzzy finite-state automaton, respectively, in two different ways. The traditional rough finite-state automata can not deal with situations when external alphabet or semantically equivalent concepts are given as inputs. The proposed rough finite-state automaton for SC can handle such situations and accept such inputs and is shown to have successful real-world applications. Similarly, a fuzzy finite rough automaton corresponding to a fuzzy automaton is also failed to process input alphabet different from their input alphabet, the proposed fuzzy finite rough automaton for SC corresponding to a given fuzzy finite automaton is capable of processing semantically related input, and external input alphabet information from the dataset obtained by real-world applications and provide better user experience and applicability as compared to classical fuzzy finite rough automaton.

16.
J Clin Invest ; 132(4)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34905510

RESUMO

Through their ability to regulate gene expression in most organs, glucocorticoid (GC) hormones influence numerous physiological processes and are therefore key regulators of organismal homeostasis. In bone, GC hormones inhibit expression of the hormone Osteocalcin for poorly understood reasons. Here, we show that in a classical endocrine feedback loop, osteocalcin in return enhanced the biosynthesis of GC as well as mineralocorticoid hormones (adrenal steroidogenesis) in rodents and primates. Conversely, inactivation of osteocalcin signaling in adrenal glands significantly impaired adrenal growth and steroidogenesis in mice. Embryo-made osteocalcin was necessary for normal Sf1 expression in fetal adrenal cells and adrenal cell steroidogenic differentiation and therefore determined the number of steroidogenic cells present in the adrenal glands of adult animals. Embryonic, not postnatal, osteocalcin also governed adrenal growth, adrenal steroidogenesis, blood pressure, electrolyte equilibrium, and the rise in circulating corticosterone levels during the acute stress response in adult offspring. This osteocalcin-dependent regulation of adrenal development and steroidogenesis occurred even in the absence of a functional hypothalamus/pituitary/adrenal axis and explains why osteocalcin administration during pregnancy promoted adrenal growth and steroidogenesis and improved the survival of adrenocorticotropic hormone signaling-deficient animals. This study reveals that a bone-derived embryonic hormone influences lifelong adrenal functions and organismal homeostasis in the mouse.


Assuntos
Glândulas Suprarrenais/embriologia , Homeostase , Sistema Hipotálamo-Hipofisário/embriologia , Osteocalcina/metabolismo , Sistema Hipófise-Suprarrenal/embriologia , Transdução de Sinais , Animais , Feminino , Glucocorticoides/genética , Glucocorticoides/metabolismo , Macaca mulatta , Camundongos , Camundongos Knockout , Osteocalcina/genética
17.
Proc Natl Acad Sci U S A ; 105(51): 20529-33, 2008 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-19074282

RESUMO

The leptin regulation of bone remodeling, which has been documented through studies of loss-of-function mutations of this hormone or of its receptor in mice and humans, still raised several unanswered questions. For instance, it has been assumed but not formally demonstrated that this regulation occurs through neuronal means. Likewise, it has not been possible until now to dissociate the influence leptin exerts on appetite and energy expenditure from this function. We show here through mouse genetic studies that a deletion of the leptin receptor in neurons results in an increase in bone formation and bone resorption, resulting in a high bone mass as seen in leptin-deficient mice. In contrast, the same deletion in osteoblasts only does not influence bone remodeling. Furthermore, through the use of l/l mice, a model of gain of function in leptin signaling harboring a Y985L substitution in the leptin receptor, we show that leptin signaling inhibits bone mass accrual by up-regulating sympathetic activity independently of any change in appetite or energy expenditure. This work establishes that in vivo leptin regulates bone mass accrual by acting through neuronal means and provides a direct demonstration that this function of leptin can occur independently of its regulation of energy metabolism.


Assuntos
Remodelação Óssea , Osso e Ossos/fisiologia , Metabolismo Energético , Leptina/fisiologia , Sistema Nervoso Simpático/fisiologia , Animais , Osso e Ossos/inervação , Camundongos , Mutação de Sentido Incorreto , Neurônios , Osteoblastos , Receptores para Leptina/deficiência , Receptores para Leptina/genética , Receptores para Leptina/fisiologia
18.
Arch Biochem Biophys ; 2010 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-20654572

RESUMO

This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.

19.
Calcif Tissue Int ; 86(5): 382-8, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20333369

RESUMO

The low-density lipoprotein receptor-related protein (Lrp)-5 regulates osteoblast proliferation and bone formation through its expression in duodenum by modifying the gut serotonin-bone endocrine axis. However, its direct role, if any, in osteoblast progenitor cells has not been studied thus far. Here, we show that mice with a Dermo1-Cre-mediated disruption of Lrp5 in osteoblast progenitor cells have normal embryonic skeletogenesis and normal skeletal growth and development postnatally. Histomorphometric analysis of 3-month-old adult mice revealed normal osteoblast numbers, bone formation rate, and bone mass in Lrp5(Dermo)(-/-) mice. In addition, analysis of two osteoporosis pseudoglioma (OPPG) patients revealed a three- to fivefold increase in their serum serotonin levels compared to age-matched controls. These results rule out a direct function of Lrp5 in osteoblast progenitor cells and add further support to the notion that dysregulation of serotonin synthesis is involved in bone mass abnormalities observed in OPPG patients.


Assuntos
Osso e Ossos/citologia , Proteínas Relacionadas a Receptor de LDL/genética , Osteoblastos/citologia , Osteogênese/genética , Células-Tronco/citologia , Animais , Cegueira/sangue , Cegueira/congênito , Densidade Óssea , Osso e Ossos/embriologia , Osso e Ossos/metabolismo , Cálcio/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Proteínas Relacionadas a Receptor de LDL/metabolismo , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Masculino , Camundongos , Osteoporose/sangue , Osteoporose/congênito , Serotonina/sangue , Síndrome
20.
J Clin Invest ; 130(6): 2888-2902, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32078586

RESUMO

Given the numerous health benefits of exercise, understanding how exercise capacity is regulated is a question of paramount importance. Circulating interleukin 6 (IL-6) levels surge during exercise and IL-6 favors exercise capacity. However, neither the cellular origin of circulating IL-6 during exercise nor the means by which this cytokine enhances exercise capacity has been formally established yet. Here we show through genetic means that the majority of circulating IL-6 detectable during exercise originates from muscle and that to increase exercise capacity, IL-6 must signal in osteoblasts to favor osteoclast differentiation and the release of bioactive osteocalcin in the general circulation. This explains why mice lacking the IL-6 receptor only in osteoblasts exhibit a deficit in exercise capacity of similar severity to the one seen in mice lacking muscle-derived IL-6 (mIL-6), and why this deficit is correctable by osteocalcin but not by IL-6. Furthermore, in agreement with the notion that IL-6 acts through osteocalcin, we demonstrate that mIL-6 promotes nutrient uptake and catabolism into myofibers during exercise in an osteocalcin-dependent manner. Finally, we show that the crosstalk between osteocalcin and IL-6 is conserved between rodents and humans. This study provides evidence that a muscle-bone-muscle endocrine axis is necessary to increase muscle function during exercise in rodents and humans.


Assuntos
Interleucina-6/imunologia , Músculo Esquelético/imunologia , Osteoblastos/imunologia , Transdução de Sinais/imunologia , Animais , Feminino , Interleucina-6/genética , Macaca mulatta , Camundongos , Camundongos Knockout , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA