Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(9)2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37175412

RESUMO

Glioblastoma multiforme (GBM) is a highly heterogeneous disease with a mesenchymal subtype tending to exhibit more aggressive and multitherapy-resistant features. Glioblastoma stem-cells derived from mesenchymal cells are reliant on iron supply, accumulated with high reactive oxygen species (ROS), and susceptible to ferroptosis. Temozolomide (TMZ) treatment is the mainstay drug for GBM despite the rapid development of resistance in mesenchymal GBM. The main interconnection between mesenchymal features, TMZ resistance, and ferroptosis are poorly understood. Herein, we demonstrated that a subunit of NADPH oxidase, CYBB, orchestrated mesenchymal shift and promoted TMZ resistance by modulating the anti-ferroptosis circuitry Nrf2/SOD2 axis. Public transcriptomic data re-analysis found that CYBB and SOD2 were highly upregulated in the mesenchymal subtype of GBM. Accordingly, our GBM cohort confirmed a high expression of CYBB in the GBM tumor and was associated with mesenchymal features and poor clinical outcome. An in vitro study demonstrated that TMZ-resistant GBM cells displayed mesenchymal and stemness features while remaining resilient to erastin-mediated ferroptosis by activating the CYBB/Nrf2/SOD2 axis. The CYBB maintained a high ROS state to sustain the mesenchymal phenotype, TMZ resistance, and reduced erastin sensitivity. Mechanistically, CYBB interacted with Nrf2 and consequently regulated SOD2 transcription. Compensatory antioxidant SOD2 essentially protected against the deleterious effect of high ROS while attenuating ferroptosis in TMZ-resistant cells. An animal study highlighted the protective role of SOD2 to mitigate erastin-triggered ferroptosis and tolerate oxidative stress burden in mice harboring TMZ-resistant GBM cell xenografts. Therefore, CYBB captured ferroptosis resilience in mesenchymal GBM. The downstream compensatory activity of CYBB via the Nrf2/SOD2 axis is exploitable through erastin-induced ferroptosis to overcome TMZ resistance.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Humanos , Camundongos , Antineoplásicos Alquilantes/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , NADPH Oxidase 2 , Fator 2 Relacionado a NF-E2/genética , Espécies Reativas de Oxigênio/metabolismo , Temozolomida/farmacologia , Temozolomida/uso terapêutico
2.
Int J Mol Sci ; 24(24)2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38139175

RESUMO

Oral squamous cell carcinoma (OSCC) is a prevalent type of oral cancer. While therapeutic innovations have made strides, radioresistance persists as a significant hindrance in OSCC treatment. Despite identifying numerous targets that could potentially suppress the oncogenic attributes of OSCC, the exploration of oncogenic protein kinases for cancer therapy remains limited. Consequently, the functions of many kinase proteins in OSCC continue to be largely undetermined. In this research, we aim to disclose protein kinases that target OSCC and elaborate their roles and molecular mechanisms. Through the examination of the kinome library of radiotherapy-resistant/sensitive OSCC cell lines (HN12 and SAS), we identified a key gene, the tyrosine phosphorylation-regulated kinase 3 (DYRK3), a member of the DYRK family. We developed an in vitro cell model, composed of radiation-resistant OSCC, to scrutinize the clinical implications and contributions of DYRK3 and phosphoribosylaminoimidazole carboxylase and phosphoribosylaminoimidazolesuccinocarboxamide synthase (PAICS) signaling in OSCC. This investigation involves bioinformatics and human tissue arrays. We seek to comprehend the role of DYRK3 and PAICS signaling in the development of OSCC and its resistance to radiotherapy. Various in vitro assays are utilized to reveal the essential molecular mechanism behind radiotherapy resistance in connection with the DYRK3 and PAICS interaction. In our study, we quantified the concentrations of DYRK3 and PAICS proteins and tracked the expression levels of key pluripotency markers, particularly PPAT. Furthermore, we extended our investigation to include an analysis of Glut-1, a gene recognized for its linkage to radioresistance in oral squamous cell carcinoma (OSCC). Furthermore, we conducted an in vivo study to affirm the impact of DYRK3 and PAICS on tumor growth and radiotherapy resistance, focusing particularly on the role of DYRK3 in the radiotherapy resistance pathway. This focus leads us to identify new therapeutic agents that can combat radiotherapy resistance by inhibiting DYRK3 (GSK-626616). Our in vitro models showed that inhibiting PAICS disrupts purinosome formation and influences the survival rate of radiation-resistant OSCC cell lines. These outcomes underscore the pivotal role of the DYRK3/PAICS axis in directing OSCC radiotherapy resistance pathways and, as a result, influencing OSCC progression or therapy resistance. Our findings also reveal a significant correlation between DYRK3 expression and the PAICS enzyme in OSCC radiotherapy resistance.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/radioterapia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/radioterapia , Carcinoma de Células Escamosas/metabolismo , Neoplasias Bucais/genética , Neoplasias Bucais/radioterapia , Neoplasias Bucais/metabolismo , Linhagem Celular Tumoral , Neoplasias de Cabeça e Pescoço/genética , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Proteínas Tirosina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
3.
Int J Mol Sci ; 23(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35806291

RESUMO

BACKGROUND: Lung cancer remains a leading cause of cancer-related death, with an annual global mortality rate of 18.4%. Despite advances in diagnostic and therapeutic technologies, non-small cell lung carcinoma (NSCLC) continues to be characterized by a poor prognosis. This may be associated with the enrichment of cancer stem cells (CSCs) and the development of chemoresistance-a double-edged challenge that continues to impede the improvement of long-term outcomes. Metabolic reprogramming is a new hallmark of cancer. Sterol regulatory element-binding proteins (SREBPs) play crucial regulatory roles in the synthesis and uptake of cholesterol, fatty acids, and phospholipids. Recent evidence has demonstrated that SREBP-1 is upregulated in several cancer types. However, its role in lung cancer remains unclear. OBJECTIVE: This study investigated the role of SREBP-1 in NSCLC biology, progression, and therapeutic response and explored the therapeutic exploitability of SREBP-1 and SREBP-1-dependent oncometabolic signaling and miRNA epigenetic regulation. METHODS: We analyzed SREBP-1 levels and biological functions in clinical samples and the human NSCLC cell lines H441 and A549 through shRNA-based knock down of SREBP function, cisplatin-resistant clone generation, immunohistochemical staining of clinical samples, and cell viability, sphere-formation, Western blot, and quantitative PCR assays. We conducted in-silico analysis of miRNA expression in NSCLC samples by using the Gene Expression Omnibus (GSE102286) database. RESULTS: We demonstrated that SREBP-1 and SCAP are highly expressed in NSCLC and are positively correlated with the aggressive phenotypes of NSCLC cells. In addition, downregulation of the expression of tumor-suppressing hsa-miR-497-5p, which predictively targets SREBP-1, was observed. We also demonstrated that SREBP-1/SCAP/FASN lipogenic signaling plays a key role in CSCs-like and chemoresistant NSCLC phenotypes, especially because the fatostatin or shRNA targeting of SREBP-1 significantly suppressed the viability, cisplatin resistance, and cancer stemness of NSCLC cells and because treatment induced the expression of hsa-miR-497. CONCLUSION: Targeting the SREBP-1/hsa-miR-497 signaling axis is a potentially effective anticancer therapeutic strategy for NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Proliferação de Células , Cisplatino/uso terapêutico , Epigênese Genética , Ácido Graxo Sintase Tipo I/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , MicroRNAs/metabolismo , Fenótipo , RNA Interferente Pequeno/farmacologia , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
4.
Int J Mol Sci ; 23(13)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35806043

RESUMO

Osteoarthritis (OA) is most prevalent in older individuals and exerts a heavy social and economic burden. However, an effective and noninvasive approach to OA treatment is currently not available. Chondrocyte senescence has recently been proposed as a key pathogenic mechanism in the etiology of OA. Furthermore, senescent chondrocytes (SnCCs) can release various proinflammatory cytokines, proteolytic enzymes, and other substances known as the senescence-associated secretory phenotype (SASP), allowing them to connect with surrounding cells and induce senesce. Studies have shown that the pharmacological elimination of SnCCs slows the progression of OA and promotes regeneration. Growth differentiation factor 15 (GDF15), a member of the tumor growth factor (TGF) superfamily, has recently been identified as a possible aging biomarker and has been linked to a variety of clinical conditions, including coronary artery disease, diabetes, and multiple cancer types. Thus, we obtained data from a publicly available single-cell sequencing RNA database and observed that GDF15, a critical protein in cellular senescence, is highly expressed in early OA. In addition, GDF15 is implicated in the senescence and modulation of MAPK14 in OA. Tissue and synovial fluid samples obtained from OA patients showed overexpression of GDF15. Next, we treated C20A4 cell lines with interleukin (IL)-1ß with or without shGDF15 then removed the conditioned medium, and cultured C20A4 and HUVEC cell lines with the aforementioned media. We observed that C20A4 cells treated with IL-1ß exhibited increased GDF15 secretion and that chondrocytes cultured with media derived from IL-1ß-treated C20A4 exhibited senescence. HUVEC cell migration and tube formation were enhanced after culturing with IL-1ß-treated chondrocyte media; however, decreased HUVEC cell migration and tube formation were noted in HUVEC cells cultured with GDF15-loss media. We tested the potential of inhibiting GDF15 by using a GDF15 neutralizing antibody, GDF15-nAb. GDF15-nAb exerted a similar effect, resulting in the molecular silencing of GDF15 in vivo and in vitro. Our results reveal that GDF15 is a driver of SnCCs and can contribute to OA progression by inducing angiogenesis.


Assuntos
Proteína Quinase 14 Ativada por Mitógeno , Osteoartrite , Idoso , Senescência Celular/genética , Condrócitos/metabolismo , Fator 15 de Diferenciação de Crescimento/metabolismo , Humanos , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Osteoartrite/metabolismo , Senoterapia
5.
Int J Mol Sci ; 23(3)2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35163585

RESUMO

BACKGROUND: The treatment of non-small-cell lung cancer (NSCLC) involves platinum-based chemotherapy. It is typically accompanied by chemoresistance resulting from antioxidant properties conferred by cancer stem cells (CSCs). Human epidermal growth factor receptor 2 (HER2) enhances CSCs and antioxidant properties in cancers, including NSCLC. METHODS: Here, we elucidated the role of histamine N-methyltransferase (HNMT), a histamine metabolism enzyme significantly upregulated in NSCLC and coexpressed with HER2. HNMT expression in lung cancer tissues was determined using quantitative reverse transcription PCR (RT-qPCR). A publicly available dataset was used to determine HNMT's potential as an NSCLC target molecule. Immunohistochemistry and coimmunoprecipitation were used to determine HNMT-HER2 correlations and interactions, respectively. HNMT shRNA and overexpression plasmids were used to explore HNMT functions in vitro and in vivo. We also examined miRNAs that may target HNMT and investigated HNMT/HER2's role on NSCLC cells' antioxidant properties. Finally, how HNMT loss affects NSCLC cells' sensitivity to cisplatin was investigated. RESULTS: HNMT was significantly upregulated in human NSCLC tissues, conferred a worse prognosis, and was coexpressed with HER2. HNMT depletion and overexpression respectively decreased and increased cell proliferation, colony formation, tumorsphere formation, and CSCs marker expression. Coimmunoprecipitation analysis indicated that HNMT directly interacts with HER2. TARGETSCAN analysis revealed that HNMT is a miR-223 and miR-3065-5p target. TBHp treatment increased HER2 expression, whereas shHNMT disrupted the Nuclear factor erythroid 2-related factor 2 (Nrf2)/ hemeoxygenase-1 (HO-1)/HER2 axis and increased reactive oxygen species accumulation in NSCLC cells. Finally, shHNMT sensitized H441 cells to cisplatin treatment in vitro and in vivo. CONCLUSIONS: Therefore, HNMT upregulation in NSCLC cells may upregulate HER2 expression, increasing tumorigenicity and chemoresistance through CSCs maintenance and antioxidant properties. This newly discovered regulatory axis may aid in retarding NSCLC progression and chemoresistance.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/enzimologia , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Histamina N-Metiltransferase/biossíntese , Neoplasias Pulmonares/enzimologia , Células-Tronco Neoplásicas/enzimologia , Estresse Oxidativo , Receptor ErbB-2/metabolismo , Regulação para Cima , Células A549 , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Feminino , Histamina N-Metiltransferase/genética , Humanos , Neoplasias Pulmonares/genética , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Receptor ErbB-2/genética
6.
Int J Mol Sci ; 22(20)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34681754

RESUMO

Osteoarthritis (OA) is a common articular disease manifested by the destruction of cartilage and compromised chondrogenesis in the aging population, with chronic inflammation of synovium, which drives OA progression. Importantly, the activated synovial fibroblast (AF) within the synovium facilitates OA through modulating key molecules, including regulatory microRNAs (miR's). To understand OA associated pathways, in vitro co-culture system, and in vivo papain-induced OA model were applied for this study. The expression of key inflammatory markers both in tissue and blood plasma were examined by qRT-PCR, western blot, immunohistochemistry, enzyme-linked immunosorbent assay (ELISA) and immunofluorescence assays. Herein, our result demonstrated, AF-activated human chondrocytes (AC) exhibit elevated NFκB, TNF-α, IL-6, and miR-21 expression as compared to healthy chondrocytes (HC). Importantly, AC induced the apoptosis of HC and inhibited the expression of chondrogenesis inducers, SOX5, TGF-ß1, and GDF-5. NFκB is a key inflammatory transcription factor elevated in OA. Therefore, SC75741 (an NFκB inhibitor) therapeutic effect was explored. SC75741 inhibits inflammatory profile, protects AC-educated HC from apoptosis, and inhibits miR-21 expression, which results in the induced expression of GDF-5, SOX5, TGF-ß1, BMPR2, and COL4A1. Moreover, ectopic miR-21 expression in fibroblast-like activated chondrocytes promoted osteoblast-mediated differentiation of osteoclasts in RW264.7 cells. Interestingly, in vivo study demonstrated SC75741 protective role, in controlling the destruction of the articular joint, through NFκB, TNF-α, IL-6, and miR-21 inhibition, and inducing GDF-5, SOX5, TGF-ß1, BMPR2, and COL4A1 expression. Our study demonstrated the role of NFκB/miR-21 axis in OA progression, and SC75741's therapeutic potential as a small-molecule inhibitor of miR-21/NFκB-driven OA progression.


Assuntos
Benzimidazóis/farmacologia , Condrócitos/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , NF-kappa B/antagonistas & inibidores , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Piperidinas/farmacologia , Pirimidinas/farmacologia , Tiazóis/farmacologia , Animais , Benzimidazóis/química , Diferenciação Celular/genética , Condrócitos/metabolismo , Condrócitos/patologia , Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo , Modelos Animais de Doenças , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Regulação da Expressão Gênica , Fator 5 de Diferenciação de Crescimento/genética , Fator 5 de Diferenciação de Crescimento/metabolismo , Humanos , Interleucina-1beta/farmacologia , MicroRNAs/metabolismo , NF-kappa B/metabolismo , Osteoartrite/patologia , Piperidinas/química , Pirimidinas/química , Ratos Wistar , Fatores de Transcrição SOXD/genética , Fatores de Transcrição SOXD/metabolismo , Transdução de Sinais/efeitos dos fármacos , Membrana Sinovial/patologia , Tiazóis/química
7.
Int J Mol Sci ; 22(14)2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34299137

RESUMO

The KRAS mutation is one of the leading driver mutations in colorectal cancer (CRC), and it is usually associated with poor prognosis and drug resistance. Therapies targeting the epidermal growth factor receptor (EFGR) are widely used for end-stage CRC. However, patients with KRAS mutant genes cannot benefit from this therapy because of Ras signaling activation by KRAS mutant genes. Our previous study revealed the anti-proliferative effect of 4-acetyl-antroquinonol B (4-AAQB) on CRC cells, but whether the drug is effective in KRAS-mutant CRC remains unknown. We screened CRC cell lines harboring the KRAS mutation, namely G12A, G12C, G12V and G13D, with one wild type cell line as the control; SW1463 and Caco-2 cell lines were used for further experiments. Sulforhodamine B assays, together with the clonogenicity and invasion assay, revealed that KRAS-mutant SW1463 cells were resistant to cetuximab; however, 4-AAQB treatment effectively resensitized CRC cells to cetuximab through the reduction of colony formation, invasion, and tumorsphere generation and of oncogenic KRAS signaling cascade of CRC cells. Thus, inducing cells with 4-AAQB before cetuximab therapy could resensitize KRAS-mutant, but not wild-type, cells to cetuximab. Therefore, we hypothesized that 4-AAQB can inhibit KRAS. In silico analysis of the publicly available GEO (GSE66548) dataset of KRAS-mutated versus KRAS wild-type CRC patients confirmed that miR-193a-3p was significantly downregulated in the former compared with the latter patient population. Overexpression of miR-193a-3p considerably reduced the oncogenicity of both CRC cells. Furthermore, KRAS is a key target of miR-193a-3p. In vivo treatment with the combination of 4-AAQB and cetuximab significantly reduced the tumor burden of a xenograft mice model through the reduction of the expression of oncogenic markers (EGFR) and p-MEK, p-ERK, and c-RAF/p-c-RAF signaling, with the simultaneous induction of miR-193a-3p expression in the plasma. In summary, our findings provide strong evidence regarding the therapeutic effect of 4-AAQB on KRAS-mutant CRC cells. Furthermore, 4-AAQB effectively inhibits Ras singling in CRC cells, through which KRAS-mutant CRC can be resensitized to cetuximab.


Assuntos
Biomarcadores Tumorais/metabolismo , Cetuximab/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética , Ubiquinona/análogos & derivados , Animais , Antineoplásicos Imunológicos/farmacologia , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Sinergismo Farmacológico , Quimioterapia Combinada , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , Prognóstico , Células Tumorais Cultivadas , Ubiquinona/química , Ubiquinona/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Quinases raf/genética , Quinases raf/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismo
8.
Int J Mol Sci ; 22(19)2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34638586

RESUMO

BACKGROUND: Glioblastoma (GBM) is the most common primary malignant brain tumor in adults. It is highly resistant to chemotherapy, and tumor recurrence is common. Neuronal precursor cell-expressed developmentally downregulated 4-1 (NEDD4-1) is an E3 ligase that controls embryonic development and animal growth. NEDD4-1 regulates the tumor suppressor phosphatase and tensin homolog (PTEN), one of the major regulators of the PI3K/AKT/mTOR signaling axis, as well as the response to oxidative stress. METHODS: The expression levels of NEDD4-1 in GBM tissues and different cell lines were determined by quantitative real-time polymerase chain reaction and immunohistochemistry. In vitro and in vivo assays were performed to explore the biological effects of NEDD4-1 on GBM cells. Temozolomide (TMZ)-resistant U87MG and U251 cell lines were specifically established to determine NEDD4-1 upregulation and its effects on the tumorigenicity of GBM cells. Subsequently, miRNA expression in TMZ-resistant cell lines was investigated to determine the dysregulated miRNA underlying the overexpression of NEDD4-1. Indole-3-carbinol (I3C) was used to inhibit NEDD4-1 activity, and its effect on chemoresistance to TMZ was verified. RESULTS: NEDD4-1 was significantly overexpressed in the GBM and TMZ-resistant cells and clinical samples. NEDD4-1 was demonstrated to be a key oncoprotein associated with TMZ resistance, inducing oncogenicity and tumorigenesis of TMZ-resistant GBM cells compared with TMZ-responsive cells. Mechanistically, TMZ-resistant cells exhibited dysregulated expression of miR-3129-5p and miR-199b-3p, resulting in the induced NEDD4-1 mRNA-expression level. The upregulation of NEDD4-1 attenuated PTEN expression and promoted the AKT/NRF2/HO-1 oxidative stress signaling axis, which in turn conferred amplified defense against reactive oxygen species (ROS) and eventually higher resistance against TMZ treatment. The combination treatment of I3C, a known inhibitor of NEDD4-1, with TMZ resulted in a synergistic effect and re-sensitized TMZ-resistant tumor cells both in vitro and in vivo. CONCLUSIONS: These findings demonstrate the critical role of NEDD4-1 in regulating the redox imbalance in TMZ-resistant GBM cells via the degradation of PTEN and the upregulation of the AKT/NRF2/HO-1 signaling pathway. Targeting this regulatory axis may help eliminate TMZ-resistant glioblastoma.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Heme Oxigenase-1/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Ubiquitina-Proteína Ligases Nedd4/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Idoso , Animais , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Humanos , Masculino , Camundongos Endogâmicos NOD , Camundongos SCID , MicroRNAs/metabolismo , Oxirredução/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Temozolomida/uso terapêutico , Regulação para Cima/efeitos dos fármacos
9.
Int J Mol Sci ; 22(21)2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34768921

RESUMO

Background: Oral squamous cell carcinoma (OSCC) has a high prevalence and predicted global mortality rate of 67.1%, necessitating better therapeutic strategies. Moreover, the recurrence and resistance of OSCC after chemo/radioresistance remains a major bottleneck for its effective treatment. Molecular targeting is one of the new therapeutic approaches to target cancer. Among a plethora of targetable signaling molecules, PDK1 is currently rising as a potential target for cancer therapy. Its aberrant expression in many malignancies is observed associated with glycolytic re-programming and chemo/radioresistance. Methods: Furthermore, to better understand the role of PDK1 in OSCC, we analyzed tissue samples from 62 patients with OSCC for PDK1 expression. Combining in silico and in vitro analysis approaches, we determined the important association between PDK1/CD47/LDHA expression in OSCC. Next, we analyzed the effect of PDK1 expression and its connection with OSCC orosphere generation and maintenance, as well as the effect of the combination of the PDK1 inhibitor BX795, cisplatin and radiotherapy in targeting it. Results: Immunohistochemical analysis revealed that higher PDK1 expression is associated with a poor prognosis in OSCC. The immunoprecipitation assay indicated PDK1/CD47 binding. PDK1 ligation significantly impaired OSCC orosphere formation and downregulated Sox2, Oct4, and CD133 expression. The combination of BX795 and cisplatin markedly reduced in OSCC cell's epithelial-mesenchymal transition, implying its synergistic effect. p-PDK1, CD47, Akt, PFKP, PDK3 and LDHA protein expression were significantly reduced, with the strongest inhibition in the combination group. Chemo/radiotherapy together with abrogation of PDK1 inhibits the oncogenic (Akt/CD47) and glycolytic (LDHA/PFKP/PDK3) signaling and, enhanced or sensitizes OSCC to the anticancer drug effect through inducing apoptosis and DNA damage together with metabolic reprogramming. Conclusions: Therefore, the results from our current study may serve as a basis for developing new therapeutic strategies against chemo/radioresistant OSCC.


Assuntos
Cisplatino/farmacologia , Glicólise/efeitos dos fármacos , Neoplasias Bucais/tratamento farmacológico , Pirimidinas/farmacologia , Piruvato Desidrogenase Quinase de Transferência de Acetil/antagonistas & inibidores , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Tiofenos/farmacologia , Adulto , Idoso , Apoptose/efeitos dos fármacos , Antígeno CD47/metabolismo , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Progressão da Doença , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Proto-Oncogênicas c-akt/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil/genética , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , Tolerância a Radiação/fisiologia , Transdução de Sinais/efeitos dos fármacos
10.
Int J Mol Sci ; 22(11)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34072728

RESUMO

Ovarian cancer is often detected at the advanced stages at the time of initial diagnosis. Early-stage diagnosis is difficult due to its asymptomatic nature, where less than 30% of 5-year survival has been noticed. The underlying molecular events associated with the disease's pathogenesis have yet to be fully elucidated. Thus, the identification of prognostic biomarkers as well as developing novel therapeutic agents for targeting these markers become relevant. Herein, we identified 264 differentially expressed genes (DEGs) common in four ovarian cancer datasets (GSE14407, GSE18520, GSE26712, GSE54388), respectively. We constructed a protein-protein interaction (PPI) interaction network with the overexpressed genes (72 genes) and performed gene enrichment analysis. In the PPI networks, three proteins; TTK Protein Kinase (TTK), NIMA Related Kinase 2 (NEK2), and cyclin-dependent kinase (CDK1) with higher node degrees were further evaluated as therapeutic targets for our novel multi-target small molecule NSC777201. We found that the upregulated DEGs were enriched in KEGG and gene ontologies associated with ovarian cancer progression, female gamete association, otic vesicle development, regulation of chromosome segregation, and therapeutic failure. In addition to the PPI network, ingenuity pathway analysis also implicate TTK, NEK2, and CDK1 in the elevated salvage pyrimidine and pyridoxal pathways in ovarian cancer. The TTK, NEK2, and CDK1 are over-expressed, demonstrating a high frequency of genetic alterations, and are associated with poor prognosis of ovarian cancer cohorts. Interestingly, NSC777201 demonstrated anti-proliferative and cytotoxic activities (GI50 = 1.6 µM~1.82 µM and TGI50 = 3.5 µM~3.63 µM) against the NCI panels of ovarian cancer cell lines and exhibited a robust interaction with stronger affinities for TTK, NEK2, and CDK1, than do the standard drug, paclitaxel. NSC777201 displayed desirable properties of a drug-like candidate and thus could be considered as a novel small molecule for treating ovarian carcinoma.


Assuntos
Biologia Computacional , Descoberta de Drogas , Perfilação da Expressão Gênica , Variação Genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Inibidores de Proteínas Quinases/química , Biomarcadores Tumorais , Proteína Quinase CDC2/antagonistas & inibidores , Proteína Quinase CDC2/química , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/química , Biologia Computacional/métodos , Descoberta de Drogas/métodos , Feminino , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Quinases Relacionadas a NIMA/antagonistas & inibidores , Quinases Relacionadas a NIMA/química , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/mortalidade , Prognóstico , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/química , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/química , Relação Estrutura-Atividade , Transcriptoma
11.
Toxicol Appl Pharmacol ; 401: 115109, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32544403

RESUMO

Bladder cancer (BCa) is the fourth leading cause of cancer deaths worldwide due to its aggressiveness and resistance against therapies. Intricate interactions between cancer cells and the tumor microenvironment (TME) are essential for both disease progression and regression. Thus, interrupting molecular communications within the TME could potentially provide improved therapeutic efficacies. M2-polarized tumor-associated macrophages (M2 TAMs) were shown to contribute to BCa progression and drug resistance. We attempted to provide evidence for ovatodiolide (OV) as a potential therapeutic agent that targets both TME and BCa cells. First, tumor-suppressing functions of OV were determined by cell viability, colony, and tumor-sphere formation assays using a coculture system composed of M2 TAMs/BCa cells. Subsequently, we demonstrated that extracellular vesicles (EVs) isolated from M2 TAMs containing oncomiR-21 and mRNAs, including Akt, STAT3, mTOR, and ß-catenin, promoted cisplatin (CDDP) resistance, migration, and tumor-sphere generation in BCa cells, through increasing CDK6, mTOR, STAT3, and ß-catenin expression. OV treatment also prevented M2 polarization and reduced EV cargos from M2 TAMs. Finally, in vivo data demonstrated that OV treatment overcame CDDP resistance. OV only and the OV + CDDP combination both resulted in significant reductions in mTOR, ß-catenin, CDK6, and miR-21 expression in tumor samples and EVs isolated from serum. Collectively, we demonstrated that M2 TAMs induced malignant properties in BCa cells, in part via oncogenic EVs. OV treatment prevented M2 TAM polarization, reduced EV cargos derived from M2 TAMs, and suppressed ß-catenin/mTOR/CDK6 signaling. These findings provide preclinical evidence for OV as a single or adjuvant agent for treating drug-resistant BCa.


Assuntos
Quinase 6 Dependente de Ciclina/metabolismo , Diterpenos/uso terapêutico , MicroRNAs/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Neoplasias da Bexiga Urinária/metabolismo , beta Catenina/metabolismo , Animais , Carcinogênese/efeitos dos fármacos , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Técnicas de Cocultura , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Diterpenos/isolamento & purificação , Diterpenos/farmacologia , Relação Dose-Resposta a Droga , Exossomos/efeitos dos fármacos , Exossomos/metabolismo , Exossomos/patologia , Feminino , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , MicroRNAs/antagonistas & inibidores , Plantas Medicinais , Serina-Treonina Quinases TOR/antagonistas & inibidores , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia , beta Catenina/antagonistas & inibidores
12.
Aging (Albany NY) ; 16(3): 2679-2701, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38305803

RESUMO

Renal cell carcinoma (RCC) is the predominant form of malignant kidney cancer. Sunitinib, a primary treatment for advanced, inoperable, recurrent, or metastatic RCC, has shown effectiveness in some patients but is increasingly limited by drug resistance. Recently identified cuproptosis, a copper-ion-dependent form of programmed cell death, holds promise in combating cancer, particularly drug-resistant types. However, its effectiveness in treating drug resistant RCC remains to be determined. Exploring cuproptosis's regulatory mechanisms could enhance RCC treatment strategies. Our analysis of data from the GEO and TCGA databases showed that the cuproptosis-related gene DBT is markedly under expressed in RCC tissues, correlating with worse prognosis and disease progression. In our study, we investigated copper CRGs in ccRCC, noting substantial expression differences, particularly in advanced-stage tumors. We established a connection between CRG expression levels and patient survival, positioning CRGs as potential therapeutic targets for ccRCC. In drug resistant RCC cases, we found distinct expression patterns for DBT and GLS CRGs, linked to treatment resistance. Our experiments demonstrated that increasing DBT expression significantly reduces RCC cell growth and spread, underscoring its potential as a therapeutic target. This research sheds new light on the role of CRGs in ccRCC and their impact on drug resistance.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Ácido Tióctico/análogos & derivados , Humanos , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/genética , Sunitinibe/farmacologia , Sunitinibe/uso terapêutico , Cobre , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Apoptose
13.
Heliyon ; 10(6): e28094, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38532994

RESUMO

Objective: Osteoarthritis (OA), the most prevalent form of arthritis, impacts approximately 10% of men and 18% of women aged above 60 years. Currently, a complete cure for OA remains elusive, making clinical management challenging. The traditional Chinese herb Notopterygium incisum, integral to the Juanbi pill for rheumatism, shows promise in safeguarding chondrocytes through its strong anti-inflammatory effects. Methods: To explore the protective effect of notopterol and miRNA (has-miR-4248) against inflammation, we simulated an inflammatory environment in chondrocytes cell lines C20A4 and C28/12, focusing on inflammasome formation and pyroptosis. Results: Our finding indicates notopterol significantly reduced interleukin (IL)-18 and tumor necrosis factor (TNF)-alpha levels in inflamed cells, curtailed reactive oxygen species (ROS) production post-inflammation, and inhibited the JAK2/STAT3 signaling pathway, thus offering chondrocytes protection from inflammation. Importantly, notopterol also hindered inflammasome assembly and pyroptosis by blocking the NF-κB/NLRP3 pathway through hsa-miR-4282 modulation. In vivo experiments showed that notopterol treatment markedly decreased Osteoarthritis Research Society International (OARSI) scores in OA mice and boosted hsa-miR-4282 expression compared to control groups. Conclusions: This study underscores notopterol's potential as a therapeutic agent in OA treatment, highlighting its capacity to shield cartilage from inflammation-induced damage, particularly by preventing pyroptosis.

14.
Aging (Albany NY) ; 16(2): 1620-1639, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38244581

RESUMO

BACKGROUND: The tumor microenvironment (TME) plays a vital role in tumor progression through intricate molecular interactions. Cancer-associated fibroblasts (CAFs), notably those expressing alpha-smooth muscle actin (α-SMA) or myofibroblasts, are instrumental in this context and correlate with unfavorable outcomes in colorectal cancer (CRC). While several transcription factors influence TME, the exact regulator causing CAF dysregulation in CRC remains elusive. Prospero Homeobox 1 (PROX1) stands out, as its inhibition reduces α-SMA-rich CAF activity. However, the therapeutic role of PROX1 is debated due to inconsistent study findings. METHODS: Using the ULCAN portal, we noted an elevated PROX1 level in advanced colon adenocarcinoma, linking to a poor prognosis. Assays determined the impact of PROX1 overexpression on CRC cell properties, while co-culture experiments spotlighted the PROX1-CAF relationship. Molecular expressions were validated by qRT-PCR and Western blots, with in vivo studies further solidifying the observations. RESULTS: Our study emphasized the connection between PROX1 and α-SMA in CAFs. Elevated PROX1 in CRC samples correlated with increased α-SMA in tumors. PROX1 modulation influenced the behavior of specific CRC cells, with its overexpression fostering invasiveness. Kaplan-Meier evaluations demonstrated a link between PROX1 or α-SMA and survival outcomes. Consequently, PROX1, alone or with α-SMA, emerges as a CRC prognostic marker. Co-culture and animal experiments further highlighted this relationship. CONCLUSION: PROX1 appears crucial in modulating CRC behavior and therapeutic resistance within the TME by influencing CAFs, signifying the combined PROX1/α-SMA gene as a potential CRC prognostic marker. The concept of developing inhibitors targeting this gene set emerges as a prospective therapeutic strategy. However, this study is bound by limitations, including potential challenges in clinical translation, a focused exploration on PROX1/α-SMA potentially overlooking other significant molecular contributors, and the preliminary nature of the inhibitor development proposition.


Assuntos
Adenocarcinoma , Fibroblastos Associados a Câncer , Neoplasias do Colo , Neoplasias Colorretais , Animais , Fibroblastos Associados a Câncer/metabolismo , Actinas/metabolismo , Neoplasias do Colo/genética , Genes Homeobox , Adenocarcinoma/genética , Resistencia a Medicamentos Antineoplásicos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Microambiente Tumoral/genética , Fibroblastos/metabolismo
15.
Biomedicines ; 11(7)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37509721

RESUMO

BACKGROUND: Hepatocellular carcinoma is the sixth most diagnosed malignancy and the fourth most common cause of cancer-related mortality globally. Despite progress in the treatment of liver cancer, nonsurgical treatments remain unsatisfactory, and only 15% of early-stage cases are surgically operable. Radiotherapy (RT) is a non-surgical treatment option for liver cancer when other traditional treatment methods are ineffective. However, RT has certain limitations, including eliciting poor therapeutic effects in patients with advanced and recurrent tumors. Tumor-associated macrophages (TAMs) are major inflammatory cells in the tumor microenvironment that are key to tumor development, angiogenesis, invasion, and metastasis, and they play an essential role in RT responses. METHODS: We used big data analysis to determine the potential of targeting CXCL6/CXCR2. We enrolled 50 patients with liver cancer who received RT at our hospital. Tumor tissue samples were examined for any relationship between CXCL6/CXCR2 activity and patient prognosis. Using a cell coculture system (Transwell), we cocultured Huh7 liver cancer cells and THP-1 monocytes with and without CXCL6/CXCR2 small interfering RNA for 72 h. RESULTS: The overexpression of CXCL6/CXCR2 was highly correlated with mortality. Our tissue study indicated a positive correlation between CXCL6/CXCR2 and M2-TAMs subsets. The coculture study demonstrated that THP-1 monocytes can secrete CXCL6, which acts on the CXCR2 receptor on the surface of Huh7 cells and activates IFN-g/p38 MAPK/NF-κB signals to promote the epithelial-mesenchymal transition and radio-resistance. CONCLUSIONS: Modulating the TAM/CXCL6/CXCR2 tumor immune signaling axis may be a new treatment strategy for the effective eradication of radiotherapy-resistant hepatocellular carcinoma cells.

16.
Eur J Pharmacol ; 943: 175526, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36693553

RESUMO

Double-hit lymphoma (DHL) is an aggressive subset of Diffuse Large B-cell Lymphoma (DLBCL) with poor outcomes and without satisfying treatment options. BTK inhibitor monotherapy is ineffective to suppress aggressive lymphoma. Hence, combination with other potential agents is warranted. Here, we demonstrated the second generation of BTK inhibitor, zanubrutinib, and a BCL-2 inhibitor, navitoclax, worked in synergistic manner to suppress DHL. Comprehensive in silico approach by interrogating single-cell to bulk-level profiling was employed along with in vitro and in vivo validation in DHL cell lines. Ablation of BTK enhanced sensitivity to navitoclax and suppressed proliferation of DHL cells. Combination of second generation of BTK inhibitor with navitoclax synergistically suppressed DLBCL cells with higher synergy score in DHL subset. The drug combination triggered apoptosis and ferroptosis, with the latter being characterized by reactive oxygen species (ROS) accumulation, extensive lipid peroxidation, and depletion of reduced glutathione. Moreover, ablation of BTK sensitized DHL cells to ferroptosis. Mechanistically, disruption of BTK and BCL-2 triggered ferroptosis by downregulating NRF2 and HMOX1, while deactivating GPX4. Combination of zanubrutinib and navitoclax effectively suppressed tumor growth in vivo. Our data suggest that zanubrutinib and navitoclax synergistically suppressed DHL by inducing apoptosis and ferroptosis.


Assuntos
Ferroptose , Linfoma Difuso de Grandes Células B , Humanos , Apoptose , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/patologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
17.
Nutrients ; 15(11)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37299411

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) remains an aggressive malignancy with a poor prognosis and a leading cause of cancer-related mortality globally. Cumulative evidence suggests critical roles for endoplasmic reticulum (ER) stress and unfolded protein response (UPR) in chronic liver diseases. However, the role of ER stress in HCC pathogenesis, aggressiveness and therapy response remains unclear and understudied. OBJECTIVES: Against this background, the present study evaluated the therapeutic efficacy and feasibility of notopterol (NOT), a furanocoumarin and principal component of Notopterygium incisum, in the modulation of ER stress and cancer stemness, and the subsequent effect on liver oncogenicity. METHODS: An array of biomolecular methods including Western blot, drug cytotoxicity, cell motility, immunofluorescence, colony and tumorsphere formation, flow-cytometric mitochondrial function, GSH/GSSG ratio, and tumor xenograft ex vivo assays were used in the study. RESULTS: Herein, we demonstrated that NOT significantly suppresses the viability, migration, and invasion capacity of the human HCC HepJ5 and Mahlavu cell lines by disrupting ATF4 expression, inhibiting JAK2 activation, and downregulating the GPX1 and SOD1 expression in vitro. NOT also markedly suppressed the expression of vimentin (VIM), snail, b-catenin, and N-cadherin in the HCC cells, dose-dependently. Treatment with NOT significantly attenuated cancer stem cells (CSCs)-like phenotypes, namely colony and tumorsphere formation, with the concomitant downregulation of stemness markers OCT4, SOX2, CD133, and upregulated PARP-1 cleavage, dose-dependently. We also demonstrated that NOT anticancer activity was strongly associated with increased cellular reactive oxidative stress (ROS) but, conversely, reduced mitochondrial membrane potential and function in the HepJ5 and Mahlavu cells in vitro. Our tumor xenograft studies showed that compared with sorafenib, NOT elicited greater tumor growth suppression without adverse changes in mice body weights. Compared with the untreated control and sorafenib-treated mice, NOT-treated mice exhibited markedly greater apoptosis ex vivo, and this was associated with the co-suppression of stemness and drug-resistance markers OCT4, SOX2, ALDH1, and the upregulation of endoplasmic reticulum stress and oxidative stress factors PERK and CHOP. CONCLUSIONS: In summary, we demonstrated for the first time that NOT exhibits strong anticancer activity via the suppression of cancer stemness, enhanced endoplasmic reticulum stress and increased oxidative stress thus projecting NOT as a potentially effective therapeutic agent against HCC.


Assuntos
Carcinoma Hepatocelular , Furocumarinas , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/metabolismo , Sorafenibe/uso terapêutico , Neoplasias Hepáticas/metabolismo , Furocumarinas/farmacologia , Linhagem Celular Tumoral , Morte Celular , Estresse do Retículo Endoplasmático , Apoptose , Carcinogênese , Estresse Oxidativo
19.
Life Sci ; 329: 121945, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37454756

RESUMO

BACKGROUND: Brain metastasis affects 20-40 % of lung cancer patients, severely diminishing their quality of life. This research focuses on miR-21, overexpressed in these patients and inversely associated with DGKB in the ERK/STAT3 pathway, suggesting a dysregulated pathway with therapeutic potential. AIMS: The objective was to investigate miR-21's role in lung cancer patients with brain metastases and whether targeting this pathway could improve treatment outcomes. We also examined the miR-21 content in tumor spheres-derived extracellular vesicles (EVs) and their influence on ERK/STAT3 signaling and metastasis. MATERIALS AND METHODS: Tumor spheres were created from metastatic lung cancer cells. We studied miR-21 levels in these spheres, their impact on macrophage polarization, and the transition of nonmetastatic lung cancer cells. Furthermore, we analyzed miR-21 content in EVs derived from these spheres and their effect on ERK/STAT3 signaling and metastasis potential. KEY FINDINGS: We found tumor spheres had high miR-21 levels, promoting macrophage polarization and, epithelial-mesenchymal transition. These spheres-derived EVs, enriched with miR-21, accelerated ERK/STAT3 signaling and metastasis. Silencing miR-21 and inhibiting ERK signaling with ulixertinib notably mitigated these effects. Moreover, ulixertinib reduced brain metastasis incidence and increased survival in a mouse model and led to reduced tumor sphere generation and miR-21 levels in EVs. SIGNIFICANCE: Our study highlights the exacerbation of lung-to-brain metastasis via miR-21-rich EV secretion. This underlines the therapeutic promise of targeting the miR-21/ERK/STAT3 pathway with ulixertinib for managing brain metastasis from lung cancer.


Assuntos
Neoplasias Encefálicas , Neoplasias Pulmonares , MicroRNAs , Animais , Camundongos , Neoplasias Encefálicas/genética , Pulmão/metabolismo , Neoplasias Pulmonares/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Qualidade de Vida , Microambiente Tumoral
20.
Chem Biol Interact ; 370: 110329, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36565974

RESUMO

Until recently, sorafenib has been the only treatment approved by the U.S. Food and Drug Administration for patients with advanced hepatocellular carcinoma (HCC). Some patients, however, exhibit resistance to this treatment and subsequently experience cancer progression, recurrence, or death. Therefore, identifying a new alternative treatment for patients with little or no response to sorafenib treatment is vital. In this study, we explored the therapeutic potential and underlying molecular mechanism of antrocinol ((3aS,4R,6aS,10aR)-4-(hydroxymethyl)-7,7-dimethyldecahydro-1H-naphtho[1,8a-c]furan-1-one) in patients with HCC. The results indicated that antrocinol was more therapeutically effective than antrocin, Stivarga, and sorafenib against HCC cell lines. Antrocinol also substantially suppressed the expression of KRAS-GTP, p-MEK1/2, p-ERK1/2, and p-AKT in the Huh7 cell line. Additionally, antrocinol-induced apoptosis in the Huh7 cell line, inhibited the formation of tumorspheres, and suppressed the expression of cancer stem cell markers CD133, KLF4, CD44, OCT4, SOX2, and c-Myc. Animal studies revealed that antrocinol alone considerably suppressed tumor growth in nonobese diabetic/severe combined immunodeficient mice inoculated with Huh7 tumorspheres. It also synergistically enhanced the anticancer effect of sorafenib, resulting in enhanced suppression of tumor growth (p < 0.001) and tumorsphere formation (p < 0.001). In tumor samples resected from mice treated with antrocinol alone or in combination with sorafenib, immunohistochemical analysis revealed an increase in BAX expression and a decrease in ERK and AKT protein expression. To the best of our knowledge, this is the first report of the anti-HCC activity of antrocinol. With its higher therapeutic efficacy than that of sorafenib, antrocinol is a candidate drug for patients with HCC who demonstrate little or no response to sorafenib treatment.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Camundongos , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Carcinoma Hepatocelular/patologia , Proteínas Proto-Oncogênicas p21(ras) , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias Hepáticas/patologia , Sistema de Sinalização das MAP Quinases , Proteínas Proto-Oncogênicas c-akt/metabolismo , Linhagem Celular Tumoral , Transdução de Sinais , Niacinamida/farmacologia , Apoptose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA