Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 110(34): 13938-43, 2013 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-23918391

RESUMO

Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are oppositely imprinted autism-spectrum disorders with known genetic bases, but complex epigenetic mechanisms underlie their pathogenesis. The PWS/AS locus on 15q11-q13 is regulated by an imprinting control region that is maternally methylated and silenced. The PWS imprinting control region is the promoter for a one megabase paternal transcript encoding the ubiquitous protein-coding Snrpn gene and multiple neuron-specific noncoding RNAs, including the PWS-related Snord116 repetitive locus of small nucleolar RNAs and host genes, and the antisense transcript to AS-causing ubiquitin ligase encoding Ube3a (Ube3a-ATS). Neuron-specific transcriptional progression through Ube3a-ATS correlates with paternal Ube3a silencing and chromatin decondensation. Interestingly, topoisomerase inhibitors, including topotecan, were recently identified in an unbiased drug screen for compounds that could reverse the silent paternal allele of Ube3a in neurons, but the mechanism of topotecan action on the PWS/AS locus is unknown. Here, we demonstrate that topotecan treatment stabilizes the formation of RNA:DNA hybrids (R loops) at G-skewed repeat elements within paternal Snord116, corresponding to increased chromatin decondensation and inhibition of Ube3a-ATS expression. Neural precursor cells from paternal Snord116 deletion mice exhibit increased Ube3a-ATS levels in differentiated neurons and show a reduced effect of topotecan compared with wild-type neurons. These results demonstrate that the AS candidate drug topotecan acts predominantly through stabilizing R loops and chromatin decondensation at the paternally expressed PWS Snord116 locus. Our study holds promise for targeted therapies to the Snord116 locus for both AS and PWS.


Assuntos
Síndrome de Angelman/genética , Cromossomos Humanos Par 15/genética , Regulação da Expressão Gênica/genética , Síndrome de Prader-Willi/genética , RNA Nucleolar Pequeno/química , Topotecan/farmacologia , Animais , Cromatina/efeitos dos fármacos , Imunoprecipitação da Cromatina , Inativação Gênica , Loci Gênicos/genética , Impressão Genômica/genética , Células HEK293 , Humanos , Immunoblotting , Hibridização in Situ Fluorescente , Região de Controle de Locus Gênico/genética , Camundongos , Camundongos Knockout , Neurônios/metabolismo , RNA Antissenso/genética , RNA Antissenso/metabolismo , RNA Nucleolar Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Estatísticas não Paramétricas , Ubiquitina-Proteína Ligases/genética , Proteínas Centrais de snRNP/genética
2.
J Biol Chem ; 279(22): 23250-4, 2004 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-15037616

RESUMO

Homologous recombinational repair preserves chromosomal integrity by removing double-strand breaks, cross-links, and other DNA damage. In eukaryotic cells, the Rad51 paralogs (XRCC2/3, Rad51B/C/D) are involved in this process, although their exact functions are largely undetermined. All five paralogs contain ATPase motifs, and XRCC3 exists in a single complex with Rad51C. To examine the function of this Rad51C-XRCC3 complex, we generated mammalian expression vectors that produce human wild-type XRCC3 or mutant XRCC3 with either a nonconservative mutation (K113A) or a conservative mutation (K113R) in the GKT Walker A box of the ATPase motif. The three vectors were independently transfected into Xrcc3-deficient irs1SF Chinese hamster ovary cells. Wild-type XRCC3 complemented irs1SF cells, albeit to varying degrees, whereas ATPase mutants had no complementing activity, even when the mutant protein was expressed at comparable levels to that in wild-type-complemented clones. Because of dysfunction of the mutants, we propose that ATP binding and hydrolyzing activities of XRCC3 are essential. We tested in vitro complex formation by wild-type and mutant XRCC3 with His6-tagged Rad51C upon co-expression in bacteria, nickel-affinity purification, and Western blotting. Wild-type and K113A mutant XRCC3 formed stable complexes with Rad51C and co-purified with Rad51C, whereas the K113R mutant did not and was predominantly insoluble. The addition of 5 mm ATP but not ADP also abolished complex formation by the wild-type proteins. These results suggest that XRCC3 probably regulates the dissociation and formation of Rad51C-XRCC3 complex through ATP binding and hydrolysis with both processes being essential for the ability of the complex to participate in homologous recombinational repair.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Animais , Cricetinae , Reparo do DNA , Feminino , Humanos , Hidrólise , Ligação Proteica , Recombinação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA