Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
EMBO J ; 42(14): e112614, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37096681

RESUMO

Tumor-initiating cells are major drivers of chemoresistance and attractive targets for cancer therapy, however, their identity in human pancreatic ductal adenocarcinoma (PDAC) and the key molecules underlying their traits remain poorly understood. Here, we show that a cellular subpopulation with partial epithelial-mesenchymal transition (EMT)-like signature marked by high expression of receptor tyrosine kinase-like orphan receptor 1 (ROR1) is the origin of heterogeneous tumor cells in PDAC. We demonstrate that ROR1 depletion suppresses tumor growth, recurrence after chemotherapy, and metastasis. Mechanistically, ROR1 induces the expression of Aurora kinase B (AURKB) by activating E2F through c-Myc to enhance PDAC proliferation. Furthermore, epigenomic analyses reveal that ROR1 is transcriptionally dependent on YAP/BRD4 binding at the enhancer region, and targeting this pathway reduces ROR1 expression and prevents PDAC growth. Collectively, our findings reveal a critical role for ROR1high cells as tumor-initiating cells and the functional importance of ROR1 in PDAC progression, thereby highlighting its therapeutic targetability.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Proteínas Nucleares/metabolismo , Linhagem Celular Tumoral , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/genética , Transição Epitelial-Mesenquimal , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Proteínas de Ciclo Celular/metabolismo , Neoplasias Pancreáticas
2.
EMBO Rep ; 24(8): e56227, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37341148

RESUMO

Hypoxia can occur in pancreatic ß-cells in type 2 diabetes. Although hypoxia exerts deleterious effects on ß-cell function, the associated mechanisms are largely unknown. Here, we show that the transcriptional repressor basic helix-loop-helix family member e40 (BHLHE40) is highly induced in hypoxic mouse and human ß-cells and suppresses insulin secretion. Conversely, BHLHE40 deficiency in hypoxic MIN6 cells or ß-cells of ob/ob mice reverses defects in insulin secretion. Mechanistically, BHLHE40 represses the expression of Mafa, encoding the transcription factor musculoaponeurotic fibrosarcoma oncogene family A (MAFA), by attenuating the binding of pancreas/duodenum homeobox protein 1 (PDX1) to its enhancer region. Impaired insulin secretion in hypoxic ß-cells was recovered by MAFA re-expression. Collectively, our work identifies BHLHE40 as a key hypoxia-induced transcriptional repressor in ß-cells that inhibit insulin secretion by suppressing MAFA expression.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Camundongos , Humanos , Animais , Secreção de Insulina , Insulina/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Células Secretoras de Insulina/metabolismo , Pâncreas/metabolismo , Camundongos Endogâmicos , Hipóxia/genética , Hipóxia/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo
3.
Hepatology ; 78(2): 468-485, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35815363

RESUMO

BACKGROUND AND AIMS: Natural killer (NK) cells are key players in tumor immunosurveillance, and metabolic adaptation manipulates their fate and functional state. The nicotinamide adenine dinucleotide (NAD + ) has emerged as a vital factor to link cellular metabolism and signaling transduction. Here, we identified NAD + metabolism as a central hub to determine the homeostasis and function of NK cells. APPROACH AND RESULTS: NAD + level was elevated in activated NK cells. NAD + supplementation not only enhanced cytokine production and cytotoxicity but also improved the proliferation and viability of NK cells. Intriguingly, the salvage pathway was involved in maintaining NAD + homeostasis in activated NK cells. Genetic ablation or pharmacological blockade of nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in the NAD + salvage pathway, markedly destroyed the viability and function of NK cells. Mechanistically, NAD + salvage dictated the mitochondrial homeostasis and oxidative phosphorylation activity to support the optimal function of NK cells. However, in human HCC tissues, NAMPT expression and NAD + level were significantly down-regulated in tumor-infiltrating NK cells, which negatively correlated with patient survival. And lactate accumulation in the tumor microenvironment was at least partially responsible for the transcriptional repression of NAMPT in NK cells. Further, deficiency of Nampt in NK cells accelerated the growth of HCC and melanoma. Supplementation of the NAD + precursor nicotinamide mononucleotide (NMN) significantly improved NK antitumor response in both mouse and human cell-derived xenografts. CONCLUSIONS: These findings reveal NAD + salvage as an essential factor for NK-cell homeostasis and function, suggesting a potential strategy for invigorating NK cell-based immunotherapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Camundongos , Animais , NAD/metabolismo , Mononucleotídeo de Nicotinamida/metabolismo , Citocinas/metabolismo , Células Matadoras Naturais/metabolismo , Microambiente Tumoral
4.
Int J Mol Sci ; 25(8)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38673770

RESUMO

Type 2 diabetes is a chronic disease marked by hyperglycemia; impaired insulin secretion by pancreatic ß-cells is a hallmark of this disease. Recent studies have shown that hypoxia occurs in the ß-cells of patients with type 2 diabetes and hypoxia, in turn, contributes to the insulin secretion defect and ß-cell loss through various mechanisms, including the activation of hypoxia-inducible factors, induction of transcriptional repressors, and activation of AMP-activated protein kinase. This review focuses on advances in our understanding of the contribution of ß-cell hypoxia to the development of ß-cell dysfunction in type 2 diabetes. A better understanding of ß-cell hypoxia might be useful in the development of new strategies for treating type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Animais , Progressão da Doença , Hipóxia Celular , Secreção de Insulina , Hipóxia/metabolismo , Insulina/metabolismo
5.
Int J Mol Sci ; 23(16)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36012298

RESUMO

Alzheimer's disease (AD) is an age-related neurodegenerative disease that is characterized by irreversible memory loss and cognitive decline. The deposition of amyloid-ß (Aß), especially aggregation-prone Aß42, is considered to be an early event preceding neurodegeneration in AD. Sirtuins (SIRT1-7 in mammals) are nicotinamide adenine dinucleotide-dependent lysine deacetylases/deacylases, and several sirtuins play important roles in AD. However, the involvement of SIRT7 in AD pathogenesis is not known. Here, we demonstrate that SIRT7 mRNA expression is increased in the cortex, entorhinal cortex, and prefrontal cortex of AD patients. We also found that Aß42 treatment rapidly increased NADPH oxidase 4 (NOX4) expression at the post-transcriptional level, and induced reactive oxygen species (ROS) production and apoptosis in neuronal SH-SY5Y cells. In contrast, SIRT7 knockdown inhibited Aß42-induced ROS production and apoptosis by suppressing the upregulation of NOX4. Collectively, these findings suggest that the inhibition of SIRT7 may play a beneficial role in AD pathogenesis through the regulation of ROS production.


Assuntos
Doença de Alzheimer , Neuroblastoma , Doenças Neurodegenerativas , Sirtuínas , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Apoptose/genética , Linhagem Celular Tumoral , Humanos , NADPH Oxidase 4/genética , Fragmentos de Peptídeos , Espécies Reativas de Oxigênio/metabolismo , Sirtuínas/genética
6.
Biochem Biophys Res Commun ; 578: 170-176, 2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34597914

RESUMO

Receptor tyrosine kinase-like orphan receptor 1 (ROR1) is highly expressed in a wide variety of hematological and solid cancers, but is low or absent in adult tissues. Here, we show that ROR1 is released with exosomes from ROR1-positive cancer cells. We also developed a simple dissociation-enhanced lanthanide fluorescence immunoassay (DELFIA) to detect cancer-derived ROR1-positive exosomes, which are captured by two anti-ROR1 antibodies and detected by the fluorescence of free chelating europium. This new DELFIA method can detect cancer-derived ROR1-positive exosomes in the cell supernatant and serum with a wide range and rapidly compared with the conventional Western blot assay. This method may be useful as a companion diagnostics for ROR1-positive cancers.


Assuntos
Antígenos de Neoplasias/metabolismo , Biomarcadores Tumorais/sangue , Exossomos/patologia , Imunoensaio/métodos , Neoplasias/patologia , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Animais , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Exossomos/metabolismo , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias/sangue , Neoplasias/metabolismo
7.
Circ J ; 85(12): 2232-2240, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33678753

RESUMO

BACKGROUND: Sirt7 is a recently identified sirtuin and has important roles in various pathological conditions, including cancer progression and metabolic disorders. It has previously been reported that Sirt7 is a key molecule in acute myocardial wound healing and pressure overload-induced cardiac hypertrophy. In this study, the role of Sirt7 in neointimal formation after vascular injury is investigated.Methods and Results:Systemic (Sirt7-/-) and smooth muscle cell-specific Sirt7-deficient mice were subjected to femoral artery wire injury. Primary vascular smooth muscle cells (VSMCs) were isolated from the aorta of wild type (WT) and Sirt7-/-mice and their capacity for cell proliferation and migration was compared. Sirt7 expression was increased in vascular tissue at the sites of injury. Sirt7-/-mice demonstrated significant reduction in neointimal formation compared to WT mice. In vitro, Sirt7 deficiency attenuated the proliferation of serum-induced VSMCs. Serum stimulation-induced upregulation of cyclins and cyclin-dependent-kinase 2 (CDK2) was significantly attenuated in VSMCs of Sirt7-/-compared with WT mice. These changes were accompanied by enhanced expression of the microRNA 290-295 cluster, the translational negative regulator of CDK2, in VSMCs of Sirt7-/-mice. It was confirmed that smooth muscle cell-specific Sirt7-deficient mice showed significant reduction in neointima compared with control mice. CONCLUSIONS: Sirt7 deficiency attenuates neointimal formation after vascular injury. Given the predominant role in vascular neointimal formation, Sirt7 is a potentially suitable target for treatment of vascular diseases.


Assuntos
Sirtuínas , Lesões do Sistema Vascular , Animais , Movimento Celular , Proliferação de Células/fisiologia , Células Cultivadas , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Neointima/patologia , Sirtuínas/genética , Sirtuínas/metabolismo , Lesões do Sistema Vascular/genética
8.
Biochem Biophys Res Commun ; 530(3): 500-507, 2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32595040

RESUMO

Recent evidence has revealed a novel signaling mechanism through which brown adipose tissue (BAT)-derived exosomal microRNAs (miRNAs) influence hepatic gene expression. Here, we uncover neuronal control of these miRNAs and identify exosomal miR-132-3p as a regulator of hepatic lipogenesis under cold stress conditions. Norepinephrine, a sympathetic nervous system neurotransmitter mediating cold-induced BAT activation, altered the composition of brown adipocyte (BAC)-derived exosomal miRNAs; among them, miR-132-3p was significantly induced. The isolated BAC-derived exosomes suppressed expression of hepatic Srebf1, a predicted target of miR-132-3p. In an indirect co-culture system, BACs suppressed expression of hepatic Srebf1 and its target lipogenic genes; this effect was not seen with miR-132-3p-inhibited BACs. Srebf1 was experimentally validated as an miR-132-3p target. Cold stimuli consistently induced miR-132-3p expression in BAT and attenuated Srebf1 expression in the liver. Our results suggest that BAT-derived exosomal miR-132-3p acts as an endocrine factor that regulates hepatic lipogenesis for cold adaptation.


Assuntos
Adipócitos Marrons/metabolismo , Fígado/metabolismo , MicroRNAs/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Animais , Células Cultivadas , Regulação para Baixo , Exossomos/genética , Lipogênese , Masculino , Camundongos Endogâmicos C57BL , Norepinefrina/metabolismo , Regulação para Cima
9.
J Biol Chem ; 293(5): 1596-1609, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29191837

RESUMO

Skeletal muscle atrophy, or sarcopenia, is commonly observed in older individuals and in those with chronic disease and is associated with decreased quality of life. There is recent medical and broad concern that sarcopenia is rapidly increasing worldwide as populations age. At present, strength training is the only effective intervention for preventing sarcopenia development, but it is not known how this exercise regimen counteracts this condition. Here, we report that expression of the inflammatory mediator angiopoietin-like protein 2 (ANGPTL2) increases in skeletal muscle of aging mice. Moreover, in addition to exhibiting increased inflammation and accumulation of reactive oxygen species (ROS), denervated atrophic skeletal muscles in a mouse model of denervation-induced muscle atrophy had increased ANGPTL2 expression. Interestingly, mice with a skeletal myocyte-specific Angptl2 knockout had attenuated inflammation and ROS accumulation in denervated skeletal muscle, accompanied by increased satellite cell activity and inhibition of muscular atrophy compared with mice harboring wildtype Angptl2 Moreover, consistent with these phenotypes, wildtype mice undergoing exercise training displayed decreased ANGPTL2 expression in skeletal muscle. In conclusion, ANGPTL2 up-regulation in skeletal myocytes accelerates muscle atrophy, and exercise-induced attenuation of ANGPTL2 expression in those tissues may partially explain how exercise training prevents sarcopenia.


Assuntos
Envelhecimento/metabolismo , Proteínas Semelhantes a Angiopoietina/biossíntese , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Sarcopenia/metabolismo , Regulação para Cima , Envelhecimento/genética , Envelhecimento/patologia , Proteína 2 Semelhante a Angiopoietina , Proteínas Semelhantes a Angiopoietina/genética , Animais , Feminino , Masculino , Camundongos , Camundongos Knockout , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/patologia , Condicionamento Físico Animal , Sarcopenia/genética , Sarcopenia/patologia , Sarcopenia/prevenção & controle
10.
Arterioscler Thromb Vasc Biol ; 38(5): 994-1006, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29496659

RESUMO

OBJECTIVE: Macrophages play a central role in various stages of atherosclerotic plaque formation and progression. The local macrophages reportedly proliferate during atherosclerosis, but the pathophysiological significance of macrophage proliferation in this context remains unclear. Here, we investigated the involvement of local macrophage proliferation during atherosclerosis formation and progression using transgenic mice, in which macrophage proliferation was specifically suppressed. APPROACH AND RESULTS: Inhibition of macrophage proliferation was achieved by inducing the expression of cyclin-dependent kinase inhibitor 1B, also known as p27kip, under the regulation of a scavenger receptor promoter/enhancer. The macrophage-specific human p27kip Tg mice were subsequently crossed with apolipoprotein E-deficient mice for the atherosclerotic plaque study. Results showed that a reduced number of local macrophages resulted in marked suppression of atherosclerotic plaque formation and inflammatory response in the plaque. Moreover, fewer local macrophages in macrophage-specific human p27kip Tg mice helped stabilize the plaque, as evidenced by a reduced necrotic core area, increased collagenous extracellular matrix, and thickened fibrous cap. CONCLUSIONS: These results provide direct evidence of the involvement of local macrophage proliferation in formation and progression of atherosclerotic plaques and plaque stability. Thus, control of macrophage proliferation might represent a therapeutic target for treating atherosclerotic diseases.


Assuntos
Aorta/patologia , Aortite/prevenção & controle , Aterosclerose/prevenção & controle , Proliferação de Células , Ativação de Macrófagos , Macrófagos Peritoneais/patologia , Placa Aterosclerótica , Animais , Aorta/metabolismo , Aortite/genética , Aortite/metabolismo , Aortite/patologia , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Células Cultivadas , Colágeno/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Modelos Animais de Doenças , Fibrose , Mediadores da Inflamação/metabolismo , Macrófagos Peritoneais/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Camundongos Transgênicos , Necrose , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA